



# **Cross Asset CVA Application**

Roland Lichters Quaternion Risk Management

IKB QuantLib User Meeting IKB Deutsche Industriebank AG, 13-14 November 2013



# **1** About Quaternion

### Specialist risk consulting and solutions, originated 2008

- Founders: Bank risk management professionals
- Locations: UK, Germany, Ireland
- Service: Quantitative analysis, valuation and validation
- Specialty: Design and integration of effective solutions based on open source
- Systems: Summit, Murex, Kondor+, Kamakura, Quic, Active Pivot, NumeriX, QuantLib
- Software: Quaternion Risk Engine (QRE)
- Clients: Commercial, state-sponsored and investment banks

Philosophy of turning banking experience into practical solutions



# 1 Quaternion Product & Offering

### **Consulting Services**

Quantitative Analysis for highly structured products Pricing and Risk System Implementation and Training

### **Validation Services**

Independent review of pricing models and their implementations Valuation of complex asset and derivative portfolios

### **Software Services**

Development of point solutions for pricing and risk analysis Support in-house quantitative development projects

### Software: Quaternion Risk Engine Cross Asset CVA Application based on QuantLib



# 2 Quaternion Risk Engine (QRE)

# **Quaternion** *RISK ENGINE* is a cross asset CVA application based on QuantLib

Used to benchmark Tier 1 Investment Bank exposure simulation methods for Basel capital calculation and CVA management.



2 What is CVA?

### Credit Valuation Adjustment CVA reduces the NPV, counterparty's default risk.

Debt Valuation Adjustment DVA increases the NPV, own default risk.

 $\mathsf{NPV} = \mathsf{NPV}_{\mathit{collateralised}} - \mathsf{CVA} + \mathsf{DVA}$ 



### **3** How to compute CVA?

Unilateral CVA "formula"  $CVA = \sum LGD \cdot PD \cdot EE$ 

Expected exposure

$$EE = \mathbb{E}\left\{ [D(t) NPV(t)]^+ \right\} = P(t) \int [NPV(t,x)]^+ \rho(t,x) dx$$

European option pricing formula with (semi-) analytical solutions for

- Interest Rate Swaps, Cross Currency Swaps
- FX Forwards, FX Options
- Caps/Floors, Swaptions
- Inflation Swaps

### **Advantage: Speed and accuracy**



## **3** How to compute CVA?

Limits of the semi-analytical approach:

- **Netting** the underlying is in fact a portfolio of transactions
- **Collateral** compute CVA for collateralised portfolios
- **Structured products** no analytical option price expression

### Generic approach:

- Monte Carlo simulation for market scenario generation
- Pricing under scenarios and through time
- NPV cube analysis for EE etc.



# 2 Quaternion Risk Engine (QRE)

### 1. Comprehensive Risk Analytics

- CVA/DVA, PFE, VaR/ETL, FVA etc
- Netting, Collateral, Deal Ageing

### 2. Scalable Architecture

- Monte Carlo Simulation Framework
- engene time
- Cross Asset Evolution Models (IR, FX, INF, EQ, COM, CR)
- Risk-neutral and real-world measures
- Parallel Processing, multi-core/CPU

### 3. Interfaces and workflow

- Browser based user interface for trade capture and application control
- What-if scenario / pre-trade impact analysis
- Efficient aggregation through reporting platforms (e.g. Active Pivot)

### 4. Transparency and Extensibility



# 2 Quaternion Risk Engine





# **3 QRE Implementation: Core Application Tasks**

- 1. Generate paths for
  - Interest rates
  - FX rates
  - Inflation rates (CPI indices and real rates)
  - Credit spreads
  - Commodity prices
  - Equity prices

Analytical tractability of models helpful to allow large jumps in time to any horizon.

- 2. Turn simulated "factors" into QuantLib term structures and index fixing history at future times
- 3. Reprice the portfolio under future market scenarios (~10 bn NPV calls)
- 4. Aggregation of NPVs across netting sets, collateral accounts, expectations, quantiles (for CVA, FVA, VaR, PFE, ...)



# **3 QRE Implementation. Core Application Support...**

### The core application needs

- Limited QuantLib amendmends
- Various QuantLib extensions (instruments, models, engines) following QuantLib design and structure, organised as a separate Library
- Some Wrapper Libraries for "building the forest"
  - constructing QuantLib/QuantExt objects from external representations (e.g. term structures, portfolios)
  - organising data (market quote and "curves" repository, etc.)
  - I/O, accessing data (databases, xml files, etc.)
- **Parallel processing** for cube generation in finite time
- Help in **efficient aggregation** of large cubes (~10bn NPVs)

# 3 QRE: Modules



**Modules –** controlled by scripts and XML files or via Web based front end:

- 1. Scenario Generation RFE models and market data simulation.
- 2. Pricing Library Instruments, pricing engines (extended QuantLib)
- 3. Cube Generation Monte Carlo framework to efficiently assemble the NPV cube, parallel processing (multi-core/CPU)
- 4. Cube Analysis Aggregation, netting, statistics, report generation

# 3 QRE: Modules





# **3 QRE Implementation: Limited QuantLib Amendmends**

### Examples:

- SimpleQuote: setValueSilent() to bypass observer notification
- SwapIndex: caching of underlying vanilla swaps in a map by fixing date, pass a pricing engine to the constructor
- IborCoupon: Overwrite amount() method to avoid coupon pricer
- Some Kronrod integral and Numeric Hagan pricer fixes
- StochasticProcessArray: Expose SalvagingAlgorithm to the constructor
- VanillaSwap: Added fixedAnnuity() and floatingAnnuity() methods
- Swaption: added impliedNormalVolatility() method, added NormalBlackSwaptionEngine



# 3 **QRE Implementation: QuantLib Extensions**

### Instruments

- CDO Squared
- Cash Flow CLO
- FX Option Variants
- Amortising Swaption
- CMS Spread Option
- CMS Spread Range Accrual
- Cross Currency Swaption
- Power Reverse Dual Currency Swap
- Equity Basket Option
- Resettable Inflation Swap

### Models

- Linear Gauss Markov (LGM)
- Two-Factor LGM
- Cross/Multi Currency LGM
- Jarrow-Yildirim-LGM (Inflation)
- Dodgson-Kainth-LGM (Inflation)
- Multi-Currency-Inflation
- Black-Karasinski
- Cox-Ingersoll-Ross
- Cox-Ingersoll-Ross with jumps
- Two-Factor Gabillon (Commodity)
- ...

# **Optimization Methods: ASA, ...**

### Engines

. . .

- Two-Curve Bermudan Swaption with LGMs for Discount and Forward
- Semi-Analytic CDS Option in JCIR
- CPI Cap and YoY Inflation Cap in Jarrow-Yildirim-LGM
- . .



# **3 QRE: Model Extensions for Risk-Neutral Evolution**

- IR/FX: Multi-Currency Linear Gauss Markov model, calibrated to FX Options, Swaptions, Caps/Floors
- Inflation: Jarrow-Yildirim model for CPI and real rate, caibrated to CPI and Year-on-Year Caps/Floors
- Equity: Geometric Brownian Motion for the spot prices, deterministic dividend yield, calibrated to Equity Options
- **Commodity:** 2-factor Gabillon model for the futures prices, calibated to Constant Maturity Commodity indices and futures options
- **Credit:** Cox Ingersoll Ross model with jumps for the hazard rate (SSRJD, JCIR), calibrated to CDS Options



# 3 QRE: Risk-Neutral Evolution

### IR, FX, INF, EQ, COM model features:

- Analytically tractable: Terminal expectations and covariances have closed form expressions
- Simulation of arbitrarily large time steps possible
- Quick convergence using low discrepancy sequences
- Fast generation of market scenarios
- Risk-neutral measures: T-Forward, Linear Gauss Markov

Credit (BK, JCIR) numerically more challenging



# 3 QRE: Real-World Measure Evolution

Riccardo Rebonato, "Evolving Yield Curves in the **Real-World Measure**: a Semi-Parametric Approach"

Similar to Historical Simulation, but more involved to ensure realistic curve shapes over long horizons.

Used for Credit Risk (Potential Future Exposure) and Market Risk measures



### Key for overall performance:

- We make extensive use of QuantLib's observer/observable design: Pricing under a scenario by updating relevant market quotes
- But: Notifying large numbers of observers takes time
- Avoid kicking off observer chains after each quote's update, rather "silently" update quotes and notify term structures once after all related quotes are updated
- Unregister floating rate coupons with their indices to limit the no. of observers
- Use index and engine factories when building the portfolio (only one instance rather than one per trade) to reduce no. of observers



### Key for overall performance:

- We need to rebuild **fixing history** on each path, but adding fixings one by one turned out to be quite slow: Maintain the entire history in memory and call setHistory() to copy the entire map to the index manager
- Build quicker versions of vanilla engines where possible. Swap example: Avoid BPS calculation and avoid calling Cashflows::npv() which triggers coupon pricers:
  → get pricing time down to ~50 micro seconds
  → impact on swap indices and CMS pricing



### **GPU experiments**

- Speed up selected product's pricing by rewriting pricing engines in CUDA
- Attainable speed up varies with type of "problem": Factor 250 (Asian Option) to 10 (bespoke PRDC) using NVIDIA GeForce GT 650M, 384 cores @ 0.9 GHz
- Fine-tuning to target hardware required.
- Limited relevance for the overall portfolio so far



### **Parallelisation**

- Fortunately, bummer #1 is not an obstacle here ...
- Multiple processes to generate the NPV cube
- Assigning full portfolio but part of the samples to cores seems perfect for load balancing
- We also assign sub-portfolios to cores each processing all samples; split according to single path "timing run"; advantageous with respect to interfacing into Active Pivot



# 4 QRE Use Cases

### Some Use Cases

- CVA Solution
- Validation and benchmarking of risk factor evolution models used in an IB CVA management and credit exposure system
- Backtesting real-world and risk-neutral risk factor evolution models cross asset classes
- Pricing engine for portfolio backtesting



# Thank you



**UK** 29th Floor, 1 Canada Square, Canary Wharf, London E145DY +44 207 712 1645 donal.gallagher@quaternionrisk.com

**Germany** Wilhelmshofallee 79-81 47800 Krefeld +49 2151 9284 800 heidy.koenings@quaternionrisk.com Ireland 54 Fitzwilliam Square Dublin 2 +353 1 6344217 tim.bourke@quaternionrisk.com



info@quaternionrisk.com | www.quaternionrisk.com



# Appendix



# 5 QRE – Vanilla Swap Exposure, Uncollateralised

### Single Currency Swap, bullet, Q fixed vs. Q floating.





# 5 QRE – Vanilla Swap Exposure, Uncollateralised

### Single Currency Swap, bullet, A fixed vs. Q floating.





# 5 QRE – Cross Currency Swap, Uncollateralised

### Cross Currency Swap, bullet, Q fixed vs. Q floating.





# 5 QRE – Collateralised Swap, Example Path

### Notional 100m EUR, annual fixed vs 6m Euribor

Threshold 4m EUR, MTA 0.5m EUR, MPR 2 Weeks





# 5 QRE – Collateralised Swap, Exposures

### Notional 100m EUR, annual fixed vs 6m Euribor

Threshold 4m EUR, MTA 0.5m EUR, MPR 2 Weeks





# 5 QRE – Collateralised Swap, Lower Threshold

### Notional 100m EUR, annual fixed vs 6m Euribor

### Threshold 1m EUR, MTA 0.5m EUR, MPR 2 Weeks





# 5 QRE – Collateralised Swap, Zero Threshold

### Notional 100m EUR, annual fixed vs 6m Euribor

### MPR 2 Weeks





# 5 QRE – Portfolio Evolution, Cash vs. Physical Settlement

European Swaption Exposure, Expiry 5Y, Cash Settlement





# 5 QRE – Portfolio Evolution, Cash vs. Physical Settlement

Underlying Swap, Forward Start in 5Y, Term 5Y





# 5 QRE – Portfolio Evolution, Cash vs. Physical Settlement

### European Swaption with Physical Settlement

