
QuantLib User Meeting
30 November 2017

Deriscope

by
Ioannis Rigopoulos, owner of deriscope.com

QuantLib User Meeting, Deriscope, Nov 30, 2017

Part 1
Architecture

1

QuantLib User Meeting, Deriscope, Nov 30, 2017

The grand idea

 Map the compile-time C++ classes and respective run-time objects to User
Interface compatible elements

2

Class

A

Class

B

QuantLib

Deriscope

Excel UI

Element

A

Element

B

XML UI

Element

A

Element

B

QuantLib User Meeting, Deriscope, Nov 30, 2017

The grand idea (example)

 A QuantLib developer has just implemented a new class called "Swaption"
that has a method called "CalculateHedge" which returns a vector of Swap
instruments plus a vector of notionals

3

Swaption

CalculateHedge +
7.3

2.35

5.1

C++ World

Swap

Swap

Swap

Swaption

CalculateHedge +
7.3

2.35

5.1

Excel World (generated by Deriscope from the C++ world)

Swap

Swap

Swap

 An Excel user who accesses QuantLib through Deriscope will see in the
wizard a new type called “Swaption” that has the method
“CalculateHedge”, which produces two columns of data:

 One column containing objects of type Swap and one column containing
plain numbers (*)

QuantLib User Meeting, Deriscope, Nov 30, 2017

IoData: Bridge between C++ and UI

 C++ classes and data can be implemented in many different ways

 User Interfaces offer limited Data Representation

 Deriscope’s trick:

— 1. Map from C++ to special class called IoData

— 2. Map from IoData to each supported User Interface (*)

4

Expiry = 30.11.18

Strike = 2%

Notional = 1M

Underlying =

C++ object of
type Swaption

Excel UI

XML UI

0010110111011000
1011111000010101
0101010001010000
0101100100100010
0001111111111110
10000010101

IoData
XLOPER

Text

QuantLib User Meeting, Deriscope, Nov 30, 2017

DLL & Class Structure

 Deriscope consists of two main Dlls: Kernel & Export

 The Kernel Dll contains all the analytics, including the QuantLib library

 The Export DLL contains classes Export<X>, where X is a Kernel class deriving
from the root class Object (*)

5

Object

Tradable Quotable Market Model Util

Kernel DLL Other Classes not
exported to APIs

Export<Object>

Export<Tradable> Export<Quotable> Export<Market> Export<Model> Export<Util>

Export DLL Other Classes not
exported to APIs

Excel API XML APIZero code
maintenance
here!

Zero code
maintenance
here!

QuantLib User Meeting, Deriscope, Nov 30, 2017

Export DLL (IoData): Key-Value

 Input/output data are mostly expressed as Key-Value pairs

 Key = Text label

 Value = scalar, array, object or set of key/value pairs

 Key-Value pairs may be dynamically declared as optional

 Key-Value pairs apply to all User Interfaces (*)

6

QuantLib User Meeting, Deriscope, Nov 30, 2017

Export DLL: Advantages

 Similar User Interface across Products and across APIs.

 APIs protected from Kernel changes.

 UI Type Inheritance mimics the C++ Type Inheritance

 C++ debugging transferred to the GUI level

 Hierarchical classification of exported Functions

 Overloading of exported Functions

 Efficient pool management (*)

7

QuantLib User Meeting, Deriscope, Nov 30, 2017

UI Benefits from C++-level Reflection

 List of available exported classes

 List of available exported functions within a given class

 Required input data for a given function

 Detailed description of any class

 Detailed description of any function

 Detailed description of any key-value pair input (*)

8

QuantLib User Meeting, Deriscope, Nov 30, 2017

Drag & Drop across applications

 Any Deriscope object can be cast as an xml file and thus delivered to
another application that can read such an XML file

 Effectively every object can be serialized in a recursive fashion so that all its
dependencies are also serialized. The result is a stateless object in the form
of a text file

 The reverse process is also possible. A properly formatted XML file can give
rise to an object with a "state" in the pool of persistent objects maintained
by the application that reads the XML file

 Drag & Drop is just a simple application of all this (*)

9

QuantLib User Meeting, Deriscope, Nov 30, 2017

Kernel Architectural Aspects

 C++ with great emphasis on Object Oriented principles.

 Proprietary smart pointer

 Reflexion capabilities through template-based metaprogramming

 Definition of Concepts in terms of a few orthogonal concepts

 Deriscope has a relatively large number of pure header files (*)

10

QuantLib User Meeting, Deriscope, Nov 30, 2017

Top Level Class Hierarchy - Tradable

 Parent type of any object that describes a tradable instrument

 Examples of types deriving from Tradable are Bond, Stock, Swap etc

 The Market Price of a Tradable A with respect to another Tradable B at
some time t is defined as the number of units of the Tradable B that are
exchanged for one unit of the Tradable A

 The Theoretical Price of a Tradable A with respect to a Tradable B at some
time t relies on additional objects of type Market and Model

 The landmark identifier of the Tradable class is its "Price" function (*)

11

Object

Tradable Quotable Market Model Util

Kernel DLL
Other Classes not
exported to APIs

QuantLib User Meeting, Deriscope, Nov 30, 2017

Top Level Class Hierarchy - Quotable

 Parent type of any object that describes a financial variable

 Examples of types deriving from Quotable are Stock Price, FX Rate

 The Value of a Quotable A at time t is a Measure

 For t = 0, the Measure typically collapses to a single number

 The Theoretical Value of a Quotable A with respect to a Quotable B at some
time t relies on additional objects of type Market and Model

 The landmark identifier of the Quotable class is its " Value " function

12

Object

Tradable Quotable Market Model Util

Kernel DLL
Other Classes not
exported to APIs

QuantLib User Meeting, Deriscope, Nov 30, 2017

Top Level Class Hierarchy - Market

 This type serves as a container of "Market Data“, i.e. of the objective
information that is available as of a given time t

 A Market object is defined as a collection of "Valuation" objects

 A “Valuation” object is a pair of a Quotable and its associated Value

 It is required input to the Price and Value functions

 It is also the output of the Price and Value functions! (*)

13

Object

Tradable Quotable Market Model Util

Kernel DLL
Other Classes not
exported to APIs

QuantLib User Meeting, Deriscope, Nov 30, 2017

Top Level Class Hierarchy - Model

 This type serves to hold everything that can be seen as "subjective", i.e.
information that can be potentially disputed

 Model objects hold assumptions, such as an assumed interpolation of zero
rates or the Gaussian dynamics of a stock price

 Every Kernel class X can have a corresponding class Model<X>

 Deriscope discourages the creation of Model classes M that are not of the
form Model<X> (*)

14

Object

Tradable Quotable Market Model Util

Kernel DLL
Other Classes not
exported to APIs

QuantLib User Meeting, Deriscope, Nov 30, 2017

Top Level Class Hierarchy - Util

 This Type has a simple definition:

 It contains all those objects that do not already fall under any of Tradable,
Quotable, Market, or Model (*)

15

Object

Tradable Quotable Market Model Util

Kernel DLL
Other Classes not
exported to APIs

QuantLib User Meeting, Deriscope, Nov 30, 2017

Top Level Class Hierarchy Benefits

 Concept Orthogonalization makes the maintanance of a huge number of
Classes possible

 Elimination of “orphan” classes

— Class BlackScholes derives from Model<TradablePrice>

 Enhanced teamwork without overlap

 Single "Market" class

— Additional inherited classes, such as YieldCurve, can be added for convenience
but are not strictly necessary

 Automatic availability of "Model" classes: T --> Model<T> (*)

16

QuantLib User Meeting, Deriscope, Nov 30, 2017

Run-time Composition of Dynamic Types

 Synthesize new types out of old ones during run time

 There are certain classes that make this possible. Two important such
classes are described below:

 Tradable Price

— Manufactures a Quotable object that represents the "ratio" of two given
Tradable objects

— Example: Discount Factor type created by “dividing” a Zero Bond with its own
Currency

 Quotable Group

— Manufactures a Quotable object that represents the "equivalence class" defined
through a given Quotable object plus an "equivalence relationship"

— Example: “Yield Curve" type created out of a specific Discount Factor object and
an "equivalence relationship" that regards two Discount Factor objects
equivalent if they have the same currency (*)

17

QuantLib User Meeting, Deriscope, Nov 30, 2017

Part 2
User Interface

18

QuantLib User Meeting, Deriscope, Nov 30, 2017

Overview

 Deriscope is an Excel Add-In that enables the user to work with QuantLib in
Excel.

 Deriscope contains a wizard that allows the user to generate spreadsheet
formulas by choosing predefined types and functions.

 Deriscope places full context-relevant documentation at the user’s
fingerprints. All relevant information is usually just a mouse click away.

19

QuantLib User Meeting, Deriscope, Nov 30, 2017

Spreadsheet Formatting and Data Input

 All formulas generated by Deriscope have a similar look:

20

QuantLib User Meeting, Deriscope, Nov 30, 2017

About “Objects” and “Handle Names”

 In Deriscope almost everything is an object.

 By “object” we mean any set of data (i.e. numbers and text) held in memory
that can be accessed through a unique text identifier.

 This unique identifier is referred as “handle name”.

 Handle names act in spreadsheet as pointers to the respective objects.

21

QuantLib User Meeting, Deriscope, Nov 30, 2017

Deriscope’s “building block” approach

 In Deriscope generally the user proceeds in two steps:

— 1) Build each required object separately.

— 2) Assemble the objects together and call the desired function.

 The next screen shows how a Stock Option is priced.

22

QuantLib User Meeting, Deriscope, Nov 30, 2017
23

Stock Option Pricing Example

QuantLib User Meeting, Deriscope, Nov 30, 2017

About Types

 Every Object has a unique Type associated with it.

24

 So Types follow a hierarchy similar to the folders in a file structure.

QuantLib User Meeting, Deriscope, Nov 30, 2017

About Functions

 Every Type has a set of predefined Functions associated with it.

 Local Function: If it is invoked by an already created object.

 Static Function: If it is invoked by a type.

 Key-Value Pairs: The typical form of a function’s input data.

25

QuantLib User Meeting, Deriscope, Nov 30, 2017

Spreadsheet C++
Inheritance , Subtypes, Dynamic and StaticTypes

 Deriscope supports C++-style “inheritance” at spreadsheet level.

 Example: An object of type “Fixed Coupon Bond” can be used in a context
where an object of type “Bond” is required. In this case the object’s dynamic
(actual) type is “Fixed Coupon Bond”, but its static (context) type is “Bond”.

 Language used: Type “Fixed Coupon Bond” derives from type “Bond” or is a
subtype of type “Bond”.

26

QuantLib User Meeting, Deriscope, Nov 30, 2017

Spreadsheet C++ (Virtual Functions)

 Functions can also be virtual!

 A virtual function can be used with an object of unknown dynamic (actual)
type.

27

QuantLib User Meeting, Deriscope, Nov 30, 2017

Spreadsheet C++ (Abstract Types)

 Some types never have their own objects. They only have subtypes. These
are called abstract types.

 The type “Tradable” is abstract. No object of actual type “Tradable” exists!

 The type “Bond”, which derives from “Tradable”, is also abstract. No object
of actual type “Bond” exists!

 In the folder analogy an abstract type is equivalent to a folder that is
restricted to contain only subfolders.

28

QuantLib User Meeting, Deriscope, Nov 30, 2017
29

The fundamental Types in Deriscope

Object

Tradable
Describes tradable financial products.

Examples of derived types: Stock, Bond, Currency, Swap

Quotable
Describes financial variables that can be evaluated at any time.
Examples of derived types: Stock Price, Interest Rate, FX Rate

Market
Collection of Quotables with their valuations for given date.

Model
Contains all the assumptions needed to carry out a particular

calculation, that is not already part of the above types.

QuantLib User Meeting, Deriscope, Nov 30, 2017

The “Valuation” Type

 The type “Valuation” derives from “Market”.

 A typical Market object is just a collection of Valuation objects.

 Pricing takes in Valuation objects and returns a Valuation object.

30

Quotable

Value

Date

Market

Model

? Market ?

? Model ?

Valuation

Valuation

Valuation

Market

Market

Valuation

Pricing
Operation

QuantLib User Meeting, Deriscope, Nov 30, 2017
31

Using the “Valuation” Type

QuantLib User Meeting, Deriscope, Nov 30, 2017

Using the Wizard to View an Object

 Click on to view the contents of the object in that cell.

 Click on any cell to display relevant information within the wizard.

32

QuantLib User Meeting, Deriscope, Nov 30, 2017
33

Using the Wizard to Create Formulas

Input Area

Browse Area

Info Area

Type Selector

Object Selector

Function Selector

Press this Button to paste the
selected function in the
spreadsheet

QuantLib User Meeting, Deriscope, Nov 30, 2017

The Function Selector

 When clicked upon, the “Fuction
Selector” displays all available
Functions.

 Origin -> Type where function is
defined

 S <-> static Functions

 L <-> local Functions

 NV <-> Non-Volatile

34

• All concrete types have a Create
function

• All types deriving from Tradable
have a Price function

QuantLib User Meeting, Deriscope, Nov 30, 2017

The Browse Area

 The symbol indicates that the
input value is an object.

 Click on to display the object’s
contents and edit them.

 The symbol indicates that the
input value can be any value out of
an enumerated list of choices.

 Click on to display the choices
and select one of them.

 Click on any element to display
relevant information in the Info
Area below.

35

QuantLib User Meeting, Deriscope, Nov 30, 2017

Getting Information in Spreadsheet

 No comments or dropdowns are needed within the spreadsheet!

36

•The user may ask for help by
selecting any key

•… or get a dropdown with the
possible values by selecting any
value.

QuantLib User Meeting, Deriscope, Nov 30, 2017

XML Export of Object

 Any object can be permanently stored (exported) as an xml file.

37

QuantLib User Meeting, Deriscope, Nov 30, 2017

XML Import of Object

 Inversely an object may be created (imported) by reading a previously
exported xml file.

38

QuantLib User Meeting, Deriscope, Nov 30, 2017

XML Export of Deriscope Formula

 Any Deriscope formula can be permanently stored (exported) as an xml file
and subsequently sent to a support person for analysis.

 If a comment is present, it will be also part of the xml file.

 This reduces the need for sending whole spreadsheets if issues arise.

39

