

Cash Settled Swaption Pricing

Peter Caspers (with Jörg Kienitz)

Quaternion Risk Management

30 November 2017

Agenda

Cash Settled Swaption Arbitrage

How to fix it

Agenda

Cash Settled Swaption Arbitrage

How to fix it

Market Formula

- Liquid Swaptions for EUR and GBP are cash settled
- Payer Swaption Payoff $C(S)(S-K)^+$ with $C(S) = \sum_{i=1}^{N} \frac{\tau}{(1+\tau S)^i}$
- Market Formula: $P(0,T)C(S_0)$ Black $(K, S_0, t, \sigma(K))$
- Common knowledge: The market formula is not arbitrage free
- But this was mostly not considered a serious problem and
 - the market formula was used also for ITM options
 - the physical and cash smiles were not distinguished

A simple arbitrage strategy

- "Zero wide collar" CC = Long payer, short receiver, same strike K
- Matthias Lutz (2015) found a practical arbitrage strategy¹
 - Buy a zero wide collar for some $K > S_0$
 - Hedge this position statically with an ATM zero wide collar
- Hedge Ratio $\Delta = CC_S(K, S_0)/CC_S(S_0, S_0)$
- According to the market formula:
 - Forward Premium $C(S_0)(S_0 K)$
 - Hedge can be purchased at zero cost
- Payoff: $C(S)(S-K) \Delta C(S)(S-S_0) C(S_0)(S_0-K)$
- This is positive whenever $S \neq S_0$ (and $S > -1/\tau$)

¹Two Collars and a Free Lunch, http://ssrn.com/abstract=2686622

A simple arbitrage strategy

Payoff for $S_0 = 0.0151$, K = 0.06, N = 30

Agenda

Cash Settled Swaption Arbitrage

How to fix it

Vanilla Models

- We need a proper pricing model for Cash Swaptions
- Full Term Structure Models are possible, but heavy
- Instead use a terminal swap rate model model to evaluate

$$A(0)E^{A}\left(\frac{C(t,S)P(t,T)}{A(t,S)}\max(S(t)-K,0)\right)$$

where

- t is the fixing and T the settlement time
- C and A are the cash and physcial annuities respectively

Vanilla Models

General approach: Specify mapping function

$$M(S(T)) = E^{A}\left(\frac{P(t,T)}{A(t,S)}\middle|S(t)\right)$$

- M links the underlying swap rate to all discount bonds appearing under the expectation operator
- Once you have that, you can either
 - integrate over the density $\frac{\partial c(t)}{\partial K^2}$ of S(t) implied by the volatility smile
 - use integration by parts to move $\frac{\partial}{\partial K^2}$ from c(t) to the integrand

Linear TSR

$$\blacksquare M(S(T)) = \alpha S(T) + \beta$$

- see QuantLib::LinearTsrPricer for such a pricer in the context of CMS coupon pricing
- simple, fast and arbitrage free ...
- ... but for longer maturities possibly unrealistic

Cedervall-Piterbarg Exponential TSR

- Refined TSR approach²
- M(S(T)) takes into account all relevant swap rates with expiry *t*, their implied volatilities and correlations
- Stochastic Libor / OIS discounting basis can be incorporated
- Arguably the "state of the art" TSR
- Closer to full term structure models than Linear TSR

²Full implications for CMS convexity, Asia Risk, April 2012

© 2017 Quaternion™ Risk Management Ltd.

Peter Caspers (with Jörg Kienitz)

Implying the physical smile

- Input is the cash market smile
- From that back out a physical smile, under which the TSR model produces the given market premiums
- For this, choose a parametrisation for the physical smile (e.g. SABR)
- Use a numerical optimisation to fit the physical smile to the market premiums
- The physical smile is used
 - to price non-quoted cash swaptions (e.g. ITM options)
 - to price physically settled swaptions
 - to calibrate term structure models (since they usually assume a physical input smile)
 - as an input for other vanilla models, e.g. for CMS coupon pricing

 Possibly a simultaneous fit to the cash smile and the CMS market is required

Sample Implementation Steps

- Basis is a TSR Cash Swaption Pricing Engine
- SABR Smile Section that calibbrates to a given grid of input cash volatilities
- With that set up an implied physcial swaption cube
- Possibly, use β to calibrate to CMS, and α, ν, ρ to calibrate to the cash smile

- 10Y/10Y, forward 0.03, discount 0.02
- Cash Volatility Input Smile SABR (0.015, 0.03, 0.2, 0.0)
- Input cash smile vs. calibrated physical smile (Linear TSR model with one factor reversion 0.05)

Difference cash smile vs. calibrated physical smile:

Implied Cash Volatlities after fitting a physical smile and repricing with Linear TSR model:

Implied Cash Volatlity as Spreads to input volatilities:

Firm locations and details

Quaternion[™] Risk Management is based in four locations:

Ireland	London	USA	Germany
54 Fitzwilliam Square,	29th floor	24th floor	Maurenbrecherstrasse
Dublin 2,	Canada Square,	World Financial Centre,	47803 Krefeld,
Ireland,	Canary Wharf,	200 Vesey Street,	Germany.
	London E14 5DY.	NY 10281-1004.	-
+353 1 678 7922	+44 2077121645	+1 646 952 8799	+49 2151 9284 800

quaternion.com

Quaternion™ is a sponsor of opensourcerisk.org along with Columbia University and Tullet Prebon Information

Data. It's IN OUR DNA.

DISCLAIMER:

This document is presented on the basis of information that is not publicly available. Quaternion™ is not liable for its contents. The presentation is for the named recipient only and is private, confidential and commercially sensitive.

16