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A forward swap rate is given as float leg over annuity 

𝑆 𝑡 = ∑ 𝐿 𝑡 ⋅ 𝜏 ⋅ 𝑃(𝑡, 𝑇 )
∑ 𝜏 ⋅ 𝑃(𝑡, 𝑇 )

( )

 

We consider a call on a (say 10y) swap rate 𝑆 𝑇  fixed at 𝑇, 

𝑆 𝑇 − 𝐾  and paid at 𝑇 ≥ 𝑇 

Payoff is evaluated under the annuity meassure 

𝑉 𝑡 = 𝐴𝑛 𝑡 ⋅ 𝐸 𝑃(𝑇, 𝑇 )
𝐴𝑛(𝑇) ⋅ 𝑆 𝑇 − 𝐾  

› Annuity meassure because swap rate dynamics are in principle available from swaption skew 

› However, additional term 𝑃(𝑇, 𝑇 )/𝐴𝑛(𝑇) requires special treatment (convexity) 

CMS coupons refer to swap rates (like swaptions) but pay at a single pay date 
(unlike swaptions) 

Tenor basis enters CMS pricing via swap rates (Libor forward curve) and additional discount terms (OIS 
discount curve) 
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Sometimes it makes sense to split up in Vanilla payoff and convexity adjustment 

𝑉 𝑡 = 𝑃(𝑡, 𝑇 ) ⋅ 𝐸 𝑆 𝑇 − 𝐾 + 𝐸 𝑃(𝑇, 𝑇 )
𝐴𝑛(𝑇)

𝐴𝑛 𝑡
𝑃(𝑡, 𝑇 ) − 1 ⋅ 𝑆 𝑇 − 𝐾  

 

 

What are the challenges for calculating the convexity adjustment? 

» We know the dynamics of 𝑆 𝑇  (under the annuity meassure) 

» We do not know the dynamics of 𝑃(𝑇, 𝑇 )/𝐴𝑛(𝑇) 

» But it is reasonable to assume a very strong relation between 𝑆 𝑇   and 𝑃(𝑇, 𝑇 )/𝐴𝑛(𝑇) 

 

CMS payoff may be decomposed into a Vanilla part and a remaining convexity 
adjustment part 

Vanilla option Convexity adjustment 

For CMS pricing we need to express 𝑃(𝑇, 𝑇 )/𝐴𝑛(𝑇) in terms of the swap rate 𝑆 𝑇  taking into account 
tenor basis  
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Annuity Mapping Function as Conditional Expectation 
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Consider the iterated expectation 

𝐸 𝐸 𝑃(𝑇, 𝑇 )
𝐴𝑛(𝑇) ⋅ 𝑆 𝑇 − 𝐾  | 𝑆 𝑇 = 𝑠 = 𝐸 𝐸 𝑃(𝑇, 𝑇 )

𝐴𝑛(𝑇)  | 𝑆 𝑇 = 𝑠 ⋅ 𝑆 𝑇 − 𝐾  

Define the annuity mapping function 

𝛼 𝑠, 𝑇 = 𝐸 𝑃(𝑇, 𝑇 )
𝐴𝑛(𝑇)  | 𝑆 𝑇 = 𝑠  

By construction 𝛼 𝑠, 𝑇  is deterministic in 𝑠. We can write 
𝑉 𝑡 = 𝐴𝑛 𝑡 ⋅ 𝐸 𝛼 𝑆 𝑇 , 𝑇 ⋅ 𝑆 𝑇 − 𝐾  

= 𝐴𝑛 𝑡 ⋅ 𝛼 𝑆 𝑇 , 𝑇 ⋅ 𝑆 𝑇 − 𝐾 ⋅ 𝑑𝑃 𝑆 𝑇  

Conceptually, CMS pricing consists of three steps 

1. Determine terminal distrubution 𝑑𝑃 𝑆 𝑇  of swap rate (in annuity meassure) 

2. Specify a model for the annuity mapping function 𝛼 𝑠, 𝑇  

3. Integrate payoff and annuity mapping function analytically (if possible) or numerically 

 

Quotient 𝑃(𝑇, 𝑇 )/𝐴𝑛(𝑇) is expressed in terms of the swap rate 𝑆(𝑇) by means 
of an annuity mapping function 

2016-07-12  |  Multi-Curve Convexity  |  Annuity Mapping Function as Conditional Expectation  (1/9) 
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In general tenor basis and multi-curve pricing affects CMS pricing by two 
means 

𝑉(𝑡) = 𝐴𝑛 𝑡 ⋅ 𝛼 𝑆 𝑇 , 𝑇 ⋅ 𝑆 𝑇 − 𝐾 ⋅ 𝑑𝑃 𝑆 𝑇  

1. Vanilla swaption pricing 

› Required to determine terminal distribution 

› Use tenor forward curve and Eonia 

discount curve to calculate forward swap 

rate 

2. Construction of annuity mapping function 

› Relate Eonia discount factors (and annuity) 

to swap rates based on tenor forward curve 

(and Eonia discount curve) 

Multi-curve pricing for CMS coupons requires a basis model to specify the relation between discount 
factors and forward swap rate 

2016-07-12  |  Multi-Curve Convexity  |  Annuity Mapping Function as Conditional Expectation  (2/9) 
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How does an annuity mapping function look like in practice? 
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» For the Hull White model an annuity mapping function 𝛼 𝑆 𝑇 , 𝑇  can easily be calculated 

» This gives an impression of its functional form 

The annuity mapping function shows less curvature in 𝑆- and 𝑇-direction. Thus it appears reasonable to 
apply linear approximations 

2016-07-12  |  Multi-Curve Convexity  |  Annuity Mapping Function as Conditional Expectation  (3/9) 
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Assume an affine functional relation for the annuity mapping function 
𝛼 𝑠, 𝑇 = 𝑎 𝑇 ⋅ 𝑠 + 𝑏(𝑇 ) 

for suitable time-dependent functions 𝑎 𝑇  and 𝑏(𝑇 ). By construction there is a fundamental no-
arbitrage condition for TSR models 

𝐸 𝛼(𝑆 𝑇 , 𝑇 ) = 𝐸 𝐸 𝑃(𝑇, 𝑇 )
𝐴𝑛(𝑇)  | 𝑆 𝑇 = 𝑠 = 𝐸 𝑃(𝑇, 𝑇 )

𝐴𝑛(𝑇) = 𝑃(𝑡, 𝑇 )
𝐴𝑛(𝑡)  

From definition of the linear TSR model we get 
𝐸 𝛼(𝑆 𝑇 , 𝑇 ) = 𝐸 𝑎 𝑇 ⋅ 𝑆(𝑇) + 𝑏(𝑇 ) = 𝑎 𝑇 ⋅ 𝑆(𝑡) + 𝑏(𝑇 ) 

Thus 

𝑏 𝑇 = 𝑃(𝑡, 𝑇 )
𝐴𝑛(𝑡) − 𝑎 𝑇 ⋅ 𝑆(𝑡) 

This yields a linear TSR model representation only in terms of function 𝑎 𝑇  as(1) 

𝜶 𝒔, 𝑻𝒑 = 𝒂 𝑻𝒑 ⋅ 𝒔 − 𝑺(𝒕) + 𝑷(𝒕, 𝑻𝒑)
𝑨𝒏(𝒕)  

 

One modelling approach for the annuity mapping function is a linear terminal 
swap rate (TSR) model 

Slope function 𝑎 𝑇  corresponds to 𝐺′(𝑅 ) in Hagan‘s Convexity Conundrums paper 

Linear TSR models only differ in their specification of the slope function 𝑎 𝑇 .  

2016-07-12  |  Multi-Curve Convexity  |  Annuity Mapping Function as Conditional Expectation  (4/9) 
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Remember that 𝐴𝑛 𝑇 = ∑ 𝜏 ⋅ 𝑃(𝑇, 𝑇 ). For all realisations 𝑠 of future swap rates 𝑆(𝑇) we have 

𝜏 ⋅ 𝛼 𝑠, 𝑇 = 𝐸 𝜏 ⋅ 𝑃(𝑇, 𝑇 )
𝐴𝑛(𝑇)  | 𝑆 𝑇 = 𝑠 = 𝐸 𝐴𝑛(𝑇)

𝐴𝑛(𝑇) | 𝑆 𝑇 = 𝑠 = 1 

Applying the linear TSR model yields 

𝜏 ⋅ 𝛼 𝑠, 𝑇 = 𝜏 ⋅ 𝑎 𝑇 ⋅ 𝑠 − 𝑆 𝑡 + 𝜏 ⋅ 𝑃 𝑡, 𝑇
𝐴𝑛 𝑡 = 1 

Thus additivity condition for slope function 𝑎 ⋅  becomes 

𝜏 ⋅ 𝑎 𝑇 = 0 

 

A further model-independent condition is given as additivity condition 

So far, no-arbitrage and additivity condition only depend on OIS discount factors. That is tenor basis does 
not affect them 

2016-07-12  |  Multi-Curve Convexity  |  Annuity Mapping Function as Conditional Expectation  (5/9) 
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Tenor basis is modelled as deterministic spread on continuous compounded 
forward rates for various tenors 

Maturity 

C
on

t. 
C

om
p.

 R
at

es
 

6m Euribor tenor curve with forward rates 𝐿 (𝑡; 𝑇 , 𝑇 ) 

Eonia/OIS discount curve with discount factor 𝑃(𝑡, 𝑇) 

𝑓 (𝑡, 𝑇) 

𝑓(𝑡, 𝑇) 
Deterministic spread relation between forward rates 

𝑓 𝑡, 𝑇 = 𝑓 𝑡, 𝑇 + 𝑏(𝑇) 

Deterministic Relation betwen forward Libor rates and OIS discount factors 

1 + 𝜏 ⋅ 𝐿 𝑡 = 𝐷 ⋅ 𝑃 𝑡, 𝑇
𝑃 𝑡, 𝑇  with 𝐷 = 𝑒∫  

Swap rates may be expressed in terms of discount factors (without Libor rates) 

𝑆 𝑡 = ∑ 𝐿 𝑡 ⋅ 𝜏 ⋅ 𝑃(𝑡, 𝑇 )
∑ 𝜏 ⋅ 𝑃(𝑡, 𝑇 ) = ∑ 𝜔 ⋅ 𝑃(𝑡, 𝑇 )

∑ 𝜏 ⋅ 𝑃(𝑡, 𝑇 )      with     𝜔 =
𝐷 ,  𝑖 = 0

𝐷 − 1,  𝑖 = 1, … , 𝑁 − 1
−1,  𝑖 = 𝑁

 

We use the multiplicative terms 𝐷  to describe tenor basis 

2016-07-12  |  Multi-Curve Convexity  |  Annuity Mapping Function as Conditional Expectation  (6/9) 
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We have for all realisations 𝑠 of future swap rates 𝑆(𝑇)  

𝜔 ⋅ 𝛼 𝑠, 𝑇 = 𝐸 ∑ 𝜔 ⋅ 𝑃(𝑇, 𝑇 )
∑ 𝜏 ⋅ 𝑃(𝑇, 𝑇 ) | 𝑆 𝑇 = 𝑠 = 𝐸 𝑆 𝑇 | 𝑆 𝑇 = 𝑠 = 𝑠 

Applying the linear TSR model yields 

𝜔 ⋅ 𝛼 𝑠, 𝑇 = 𝜔 ⋅ 𝑎(𝑇 ) ⋅ 𝑠 − 𝑆 𝑡 + 𝜔 ⋅ 𝑃 𝑡, 𝑇
𝐴𝑛 𝑡 = 𝑠 

Above equations yield consistency condition specifying slope of 𝑎 ⋅  

𝜔 ⋅ 𝑎 𝑇 = 1 

Additional consistency condition links today‘s forward swap rate to discount 
factors 

Tenor basis enters coefficients 𝜔  (via spread terms 𝐷 ). Thus tenor basis has a slight effect of the slope of 
annuity mapping function in 𝑇-direction 

2016-07-12  |  Multi-Curve Convexity  |  Annuity Mapping Function as Conditional Expectation  (7/9) 
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Neccessary (additivity and consistency) conditions for a linear TSR model are 

𝜏 ⋅ 𝑎 𝑇 = 0     and    𝜔 ⋅ 𝑎 𝑇 = 1 

If we set   𝑎 𝑇 = 𝑢 ⋅ 𝑇 − 𝑇 + 𝑣   then we may directly solve for 𝑢 and 𝑣 

𝑢 = −
∑ 𝜏̅

∑ 𝜏̅ 𝑇 − 𝑇 ⋅ ∑ 𝜔 − ∑ 𝜔 𝑇 − 𝑇 ⋅ ∑ 𝜏̅  

𝑣 =
∑ 𝜏̅ 𝑇 − 𝑇

∑ 𝜏̅ 𝑇 − 𝑇 ⋅ ∑ 𝜔 − ∑ 𝜔 𝑇 − 𝑇 ⋅ ∑ 𝜏̅  

 

Additivity and consistency condition may be combined to fully specify an affine 
annuity mapping function 

There are more sophisticated approaches available to specify the annuity mapping function. However, to 
be fully consistent, they might need to be adapted to the consistency condition with tenor basis 

2016-07-12  |  Multi-Curve Convexity  |  Annuity Mapping Function as Conditional Expectation  (8/9) 
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Comparing annuity mapping function in Hull White and affine TSR model 
shows reasonable approximation for relevant domain 
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Normal Model for CMS Coupons 
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𝑉 𝑡 = 𝑃(𝑡, 𝑇 ) ⋅ 𝐸 𝑆 𝑇 − 𝐾 + 𝐸 𝑃(𝑇, 𝑇 )
𝐴𝑛(𝑇)

𝐴𝑛 𝑡
𝑃(𝑡, 𝑇 ) − 1 ⋅ 𝑆 𝑇 − 𝐾

( )

 

Replacing ( , )
( )   by 𝛼 𝑠, 𝑇 = 𝑎 𝑇 ⋅ 𝑆(𝑇) − 𝑆(𝑡) + ( , )

( )  (conditional expectation) yields 

𝐶𝐴 𝑡 = 𝐸 𝑎 𝑇 ⋅ 𝑆(𝑇) − 𝑆 𝑡 + 𝑃 𝑡, 𝑇
𝐴𝑛 𝑡

𝐴𝑛 𝑡
𝑃 𝑡, 𝑇 − 1 ⋅ 𝑆 𝑇 − 𝐾  

= 𝑎 𝑇 ⋅ 𝐴𝑛 𝑡
𝑃 𝑡, 𝑇 ⋅ 𝐸 𝑆(𝑇) − 𝑆 𝑡 ⋅ 𝑆 𝑇 − 𝐾  

Applying linear TSR model to CMS instruments 

We do have a specification for slope function How to solve for the expectation? 

Solving for the expectation requires a model for the swap rate. Due to current low/negative interest rates 
we will apply a normal model. 

2016-07-12  |  Multi-Curve Convexity  |  Normal Model for CMS Coupons  (1/5) 
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𝑆(𝑇) − 𝑆 𝑡 ⋅ 𝑆 𝑇 − 𝐾 = − 𝑆 𝑡 − 𝐾 ⋅ 𝑆 𝑇 − 𝐾 + 1 ⋅ 𝑆 𝑇 − 𝐾  

 

Vanilla option may be priced with Bachelier‘s formula and implied normal volatility 𝜎   

Abbreviating 𝜈 = 𝜎 𝑇 − 𝑡  and ℎ = 𝑆 𝑡 − 𝐾 /𝜈 yields  
𝐸 𝑆 𝑇 − 𝐾 = 𝜈 ℎ ⋅ 𝑁 ℎ + 𝑁′(ℎ)  

Reusing the Vanilla model assumptions yields for the power option (after some algebra…) 

𝐸 1 ⋅ 𝑆 𝑇 − 𝐾 = 𝜈 ℎ + 1 ⋅ 𝑁 ℎ + ℎ𝑁′(ℎ)  

Convexity adjustment becomes 

𝐸 𝑆(𝑇) − 𝑆 𝑡 ⋅ 𝑆 𝑇 − 𝐾 = 𝜈 ⋅ 𝑁(ℎ) 

 

Convexity adjustment for CMS calls consists of Vanilla option and power 
option 

Convexity adjustment Vanilla option Power option 

Normal model yields compact formula for CMS convexity adjustment 

2016-07-12  |  Multi-Curve Convexity  |  Normal Model for CMS Coupons  (2/5) 
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CMS caplet 

𝐶𝐴(𝑡) = 𝑎 𝑇 ⋅ 𝐴𝑛 𝑡
𝑃 𝑡, 𝑇 ⋅ 𝜈 ⋅ 𝑁(ℎ) 

CMS floorlets 

𝐶𝐴 𝑡 = −𝑎 𝑇 ⋅ 𝐴𝑛 𝑡
𝑃 𝑡, 𝑇 ⋅ 𝜈 ⋅ 𝑁(−ℎ) 

CMS swaplets 

𝐶𝐴 𝑡 = 𝑎 𝑇 ⋅ 𝐴𝑛 𝑡
𝑃 𝑡, 𝑇 ⋅ 𝜈  

 

 

 

Analogously we find normal model convexity adjustments for CMS floorlets 
and CMS swaplets (1) 

(1) Normal model CMS convexity adjustment formulas are also stated in a preprint Version of Hagan 2003 

2016-07-12  |  Multi-Curve Convexity  |  Normal Model for CMS Coupons  (3/5) 
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Example CMS convexity adjustments for June‘16 market data based on 
Normal model 
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CMS rate 
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conv. adjustment only by 
6m Euribor curve 

 
Multi Curve: 
» Calculate swaprate and 

conv. adjustment by 6m 
Euribor forward and Eonia 
discount curve 

 
 
Affine: 
» Affine TSR model (with 

basis spreads) 
 
 
Standard: 
» (linearised) standard yield 

curve model (see Hag’03) 
 
Mean Rev. 10%: 
» (linearised) yield curve 

model based on mean 
reverting shifts (mean rev. 
10%) (see Hag’03) 

1.554% 1.542% 1.542% 1.542%

0.076%
0.078% 0.078% 0.080%

1.50%
1.52%
1.54%
1.56%
1.58%
1.60%
1.62%
1.64%

Single Curve -
Affine

Multi Curve -
Affine

Multi Curve -
Standard

Multi Curve -
Mean Rev. 10%

CM
S 

Ra
te

Index Fixing Conv. Adj.

1.493% 1.483% 1.483% 1.483%

0.256% 0.264% 0.276% 0.314%

1.40%
1.45%
1.50%
1.55%
1.60%
1.65%
1.70%
1.75%
1.80%
1.85%

Single Curve -
Affine

Multi Curve -
Affine

Multi Curve -
Standard

Multi Curve -
Mean Rev. 10%

CM
S 

Ra
te

Index Fixing Conv. Adj.

2016-07-12  |  Multi-Curve Convexity  |  Normal Model for CMS Coupons  (4/5) 



 © d-fine — All rights reserved  © d-fine — All rights reserved  |  20 

Model-implied 10y CMS swap spreads of Normal model show reasonable fit 
to quoted  market data (1) 

(1) Quotation 10y CMS swap spread: 10y CMS rate vs. 3m Euribor + quoted spread 

40

60

80

100

120

140

5Y 10Y 15Y 20Y

ICAP Bid ICAP Ask

lognormal, standard yc model normal, standard yc model

normal, mean rev. 10% normal, affine yc model

2016-07-12  |  Multi-Curve Convexity  |  Normal Model for CMS Coupons  (5/5) 



 © d-fine — All rights reserved  © d-fine — All rights reserved  |  21 

Extending QuantLib‘s CMS Pricing Framework 
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There is a flexible framework for CMS pricing in QuantLib which can easily be 
extended 

FloatingRateCoupon 

setPricer(…) 
FloatingRateCouponPricer 

CmsCoupon CmsCouponPricer 

HaganPricer LinearTsrPricer 

Andersen/ 
Piterbarg 2010 

 
Hagan 2003 

We focus on the framework specified in the HaganPricer class 
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We add analytic formulas for Normal dynamics and affine TSR model with 
basis spreads 

GFunction 
annuity mapping function class HaganPricer 

CMS framework in QuantLib allows easy modifications and extensions, e.g., generalising 
NumericHaganPricer to normal or shifted log-normal volatilities 

NumericHaganPricer 
static replication via Vanilla option pricer 

AnalyticHaganPricer 
Black model based formulas 

AnalyticNormalHaganPricer 
Bachelier model based formulas 

GFunctionStandard 
bond-math based street standard model 

GFunctionWithShift 
mean-reverting yield curve model 

GFunctionAffine 
affine TSR model with basis spreads 
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» Current low interest rates market environment requires generalisation of classical log-normal based CMS 

convexity adjustment formulas 

» Normal model for CMS pricing is easily be incorporated into QuantLib and yields good fit to CMS swap 

quotes 

» Tenor basis impacts specification of TSR models – however modelling effect is limited compared to other 

factors 
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