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Why is it worth to look at another complex rates model? 
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Model validation and independent price verification exercises benefit from a 

flexible model class to assess various product features 

Quasi-Gaussian models allow to switch on/off effects arising from the number of risk factors, volatility 

skew/smile and correlation 

Structured 

swap 

Rates 

ATM 

Vols 

Skew/ 

Smile 
Corr‘s 

… 

Vendor system 

Swap partner 

PV: 12 mm EUR 

Pricing service 

PV: 9 mm EUR 

PV: 10 mm EUR 

How can 

various prices 

be explained? 
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What are the Quasi-Gaussian model dynamics and 

properties? 

2016-12-08  |  Quasi-Gaussian Model in QuantLib  |  What are the Quasi-Gaussian model dynamics and properties? 
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Quasi-Gaussian models may be described in terms of the scalar short rate 

𝑟(𝑡), state variable 𝑥(𝑡) and auxilliary variable 𝑦(𝑡) 

(1) The description follows L. B. G. Andersen and V. V. Piterbarg. Interest Rate Modeling. Volume I-III. Atlantic Financial Press, 2010. 

Consider short rate 𝑟(𝑡) with dynamics(1) 

𝑟 𝑡 = 𝑓 0, 𝑡 + 1⊤𝑥 𝑡  

𝑑𝑥 𝑡 = 𝑦 𝑡 1 − 𝜒𝑥 𝑡 𝑑𝑡 + 𝜎𝑟 𝑡,⋅
⊤𝑑𝑊 𝑡 ,  𝑥 0 = 0 

𝑑𝑦 𝑡 = 𝜎𝑟 𝑡,⋅
⊤𝜎𝑟 𝑡,⋅ − 𝜒𝑦 𝑡 − 𝑦 𝑡 𝜒 𝑑𝑡, 𝑦 0 = 0 

Model parameters 

𝑑 … number of risk factors 

𝑥 𝑡     = 𝑥1 𝑡 ,… , 𝑥𝑑 𝑡
⊤ … state variable vector 

𝑦 𝑡     =

𝑦11(𝑡) … 𝑦1𝑑(𝑡)

⋮ ⋮
𝑦𝑑1(𝑡) … 𝑦𝑑𝑑(𝑡)

 … auxilliary variable matrix 

𝜒        =   
𝜒1
⋱
𝜒𝑑

 … diagonal matrix of mean reversion speed parameters 

𝜎𝑟(𝑡,⋅) =
𝜎11(⋅) 𝜎1𝑑(⋅)

𝜎𝑑1(⋅) 𝜎𝑑𝑑(⋅)
 … volatility matrix – to be specified in more detail 
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It turns out that future yield curves and discount factors may be represented 

independent of the choice of volatility 

Consider the auxilliary vectors of mean reversion speeds 

ℎ 𝑡 =
𝑒−𝜒1𝑡

⋮
𝑒−𝜒𝑑𝑡
, 𝐺 𝑡, 𝑇 =

1 − 𝑒−𝜒1(𝑇−𝑡) /𝜒1
⋮

1 − 𝑒−𝜒𝑑(𝑇−𝑡) /𝜒𝑑

 

Then future forward rates become 

𝑓 𝑡, 𝑇 = 𝑓 0, 𝑡 + ℎ 𝑇 − 𝑡 ⊤ 𝑥 𝑡 + 𝑦 𝑡 𝐺(𝑡, 𝑇)  

Also future zero coupon bonds (i.e. discount factors) become 

𝑃 𝑡, 𝑇 =
𝑃(0, 𝑇)

𝑃(0, 𝑡)
⋅ exp −𝐺 𝑡, 𝑇 ⊤𝑥 𝑡 −

1

2
𝐺 𝑡, 𝑇 ⊤𝑦 𝑡 𝐺(𝑡, 𝑇)  

Future forward rates 𝑓 𝑡, 𝑇  are affine functions in terms of the risk factors 𝑥 𝑡  
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Volatility matrix 𝜎𝑟(⋅) is decomposed into stochastic volatility term 𝑧(⋅) and 

local volatility term 𝜎𝑥(⋅) 

Volatility decomposition into stochastic and local volatility part 

𝜎𝑟 𝑡,⋅
⊤ = 𝑧(𝑡) ⋅ 𝜎𝑥 𝑡, 𝑥, 𝑦

⊤ 

Stochastic volatility is modelled as independent CIR process 

𝑑𝑧 𝑡 = 𝜃 ⋅ 𝑧0 − 𝑧(𝑡) ⋅ 𝑑𝑡 + 𝜂(𝑡) ⋅ 𝑧 𝑡 ⋅ 𝑑𝑍 𝑡 ,  𝑧 0 = 𝑧0 = 1, 𝑑𝑍 𝑡 ⋅ 𝑑𝑊 𝑡 = 0 

For local volatility modelling we choose 𝑑 benchmark forward rates 𝑓𝑖 𝑡 = 𝑓(𝑡, 𝑡 + 𝛿𝑖) (𝑖 = 1,… , 𝑑) and propose 

the following dynamics 

𝑑𝑓𝑖 𝑡 = ⋅ ⋅ 𝑑𝑡 + 𝑧(𝑡) ⋅ 𝜆𝑖 𝑡 ⋅ 𝑎𝑖 𝑡 + 𝑏𝑖 𝑡 ⋅ 𝑓𝑖 𝑡 ⋅ 𝑑𝑈𝑖(𝑡) 

with 𝑑𝑈𝑖(𝑡) beeing correlated with 𝑑 × 𝑑 correlation matrix Γ 

We aim at transfering benchmark forward rate dynamics into our Quasi-Gaussian model 
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Local volatility is specified based on benchmark rate volatility dynamics 

 

Set 

𝜎𝑓(𝑡,⋅) =
𝜆1(𝑡) 𝑎1 𝑡 + 𝑏1 𝑡 𝑓1(𝑡)

⋱
𝜆𝑑(𝑡) 𝑎𝑑 𝑡 + 𝑏𝑑 𝑡 𝑓𝑑(𝑡)

 

and 

𝐻 𝑡 𝐻𝑓 𝑡 −1 = 𝐻𝑓 𝑡 𝐻 𝑡 −1
−1
=
𝑒−𝜒1𝛿1 … 𝑒−𝜒𝑑𝛿1 

⋮ ⋮
𝑒−𝜒1𝛿𝑑 … 𝑒−𝜒𝑑𝛿𝑑 

 

and decompose correlation matrix (e.g. by Cholesky decomposition) 

Γ = 𝐷⊤𝐷 

Then Quasi-Gaussian local volatility becomes 

𝜎𝑥 𝑡, 𝑥, 𝑦
⊤ = 𝐻𝑓 𝑡 𝐻 𝑡 −1

−1
⋅ 𝜎𝑓 𝑡,⋅ ⋅ 𝐷⊤ 

 

Note that 𝑥 and 𝑦 enter 𝜎𝑥 implicitely by the future benchmark rates 𝑓1, … , 𝑓𝑑 in 𝜎𝑓 

2016-12-08  |  Quasi-Gaussian Model in QuantLib  |  What are the Quasi-Gaussian model dynamics and properties?  (4/6) 
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We may summarize the Quasi-Gaussian dynamics which need to be 

implemented e.g. in a Monte Carlo simulation 

 

𝑑𝑥 𝑡 = 𝑦 𝑡 1 − 𝜒𝑥 𝑡 ⋅ 𝑑𝑡 + 𝑧 𝑡 ⋅ 𝐻𝑓 𝑡 𝐻 𝑡 −1
−1
⋅ 𝜎𝑓 𝑡,⋅ ⋅ 𝐷⊤ ⋅ 𝑑𝑊 𝑡 ,  x 0 = 0 

𝑑𝑦 𝑡 = 𝑧 𝑡 𝐻 𝑡 𝐻𝑓 𝑡 −1𝜎𝑓 𝑡,⋅  Γ 𝜎𝑓 𝑡,⋅ 𝐻 𝑡 𝐻𝑓 𝑡 −1
⊤
− 𝜒𝑦 𝑡 − 𝑦 𝑡 𝜒 𝑑𝑡,  𝑦 0 = 0 

𝑑𝑧 𝑡 = 𝜃 ⋅ 𝑧0 − 𝑧 𝑡 ⋅ 𝑑𝑡 + 𝜂(𝑡) ⋅ 𝑧 𝑡 ⋅ 𝑑𝑍 𝑡 ,  𝑧 0 = 𝑧0 = 1 

 

Critical piece of a Monte Carlo simulation is the integration of the CIR process for the stochastic volatility 

𝑧 𝑡  

2016-12-08  |  Quasi-Gaussian Model in QuantLib  |  What are the Quasi-Gaussian model dynamics and properties?  (5/6) 
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What are properties of the various model parameters? 

𝐻𝑓 𝑡 𝐻 𝑡 −1
−1
=
𝑒−𝜒1𝛿1 … 𝑒−𝜒𝑑𝛿1 

⋮ ⋮
𝑒−𝜒1𝛿𝑑 … 𝑒−𝜒𝑑𝛿𝑑 

 

» 𝛿𝑖 specify explicitely modelled rates; 

rates in between are interpolated 

» 𝜒𝑖 specify fading speed of shocks 

𝜎𝑓(𝑡,⋅)

=
𝜆1(𝑡) 𝑎1 𝑡 + 𝑏1 𝑡 𝑓1(𝑡)

⋱
𝜆𝑑(𝑡) 𝑎𝑑 𝑡 + 𝑏𝑑 𝑡 𝑓𝑑(𝑡)

 

»  𝜆𝑖(𝑡) control overall (ATM) volatility 

» 𝑏𝑖(𝑡) control volatility skew 

» 𝑎𝑖 𝑡  redundant and set fixed 

𝜎𝑟 𝑡,⋅
⊤ = 𝑧 𝑡 ⋅ 𝜎𝑥 𝑡, 𝑥, 𝑦

⊤ 

𝑑𝑧 𝑡 = 𝜃 ⋅ 𝑧0 − 𝑧 𝑡 ⋅ 𝑑𝑡 + 𝜂(𝑡) ⋅ 𝑧 𝑡 ⋅ 𝑑𝑍 𝑡  

» Vol-of-vol 𝜂(𝑡) controls volatility smile 

(i.e. implied vol curvature) 

» 𝜃 termstructure of smile 

Γ = 𝐷⊤𝐷 
» Correlation matrix Γ controls de-

correlation of interest rates 

Quasi-Gaussian model allows disentangling of the various effects which drivie interest rates 
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How can the model be calibrated? 

2016-12-08  |  Quasi-Gaussian Model in QuantLib  |  How can the model be calibrated? 
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Calibration is based on deriving (approximate) swap rate dynamics in the 

Quasi-Gaussian model 

Given a formula for Vanilla options (i.e. Swaptions) we may calibrate the Quasi-Gaussian model to 

observable swaption volatility market data 

Ito‘s Lemma Use Ito‘s Lemma and write swap rate dynamics in terms of scalar Brownian motion 1 

Markovian 

projection 
Apply Markovian projection methods and derive approximate local volatility function 2 

Linearization 
Apply linearization (and further approximations) to derive time-dependent Heston-like 

dynamics 
3 

Parameter 

averaging 

Use averaging techniques to derive (approximate) time-homogenuous Heston-like 

dynamics 
4 

Variable 

transformation 
Apply variable transformation to arrive at Heston model 5 

Heston model 

vanilla option 
Finally, use semi-analytical methods to price Vanilla option in Heston model 6 

2016-12-08  |  Quasi-Gaussian Model in QuantLib  |  How can the model be calibrated?  (1/9) 
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Step 1 - Use Ito‘s Lemma and write swap rate dynamics in terms of scalar 

Brownian motion 

(Forward) swap rate in a multi-curve setting may be written in terms of 

a) future discount factors and 

b) deterministic weights capturing tenor basis spreads 

𝑆 𝑡 =
 𝐿𝑖 𝑡 ⋅ 𝜏𝑖⋅ 𝑃(𝑡, 𝑇𝑖)
𝑁
𝑖=1

 𝜏𝑗 ⋅ 𝑃(𝑡,
𝑀
𝑗=1 𝑇 𝑗)

=
 𝜔𝑖 ⋅ 𝑃(𝑡, 𝑇𝑖)
𝑁
𝑖=0

 𝜏𝑗 ⋅ 𝑃(𝑡,
𝑀
𝑗=1 𝑇 𝑗)

 

Recall that future discount factors (or zero bonds) are wttten in terms of state variable 𝑥 and 𝑦 

𝑃 𝑡, 𝑇 =
𝑃(0, 𝑇)

𝑃(0, 𝑡)
⋅ exp −𝐺 𝑡, 𝑇 ⊤𝑥 𝑡 −

1

2
𝐺 𝑡, 𝑇 ⊤𝑦 𝑡 𝐺(𝑡, 𝑇)  

Thus future swap rate is essentially a function of state variable 𝑥 (and 𝑦) 

𝑆 𝑡 = 𝑆 𝑡; 𝑥, 𝑦  

Applying Ito‘s lemma and martingale property yields  

𝑑𝑆 𝑡 = ⋅ ⋅ 𝑑𝑡 + 𝛻𝑥𝑆 𝑡 ⋅ 𝑧 𝑡 ⋅ 𝜎𝑥 𝑡, 𝑥, 𝑦
⊤ ⋅ 𝑑𝑊 𝑡  

= 𝑧 𝑡 ⋅ 𝛻𝑥𝑆 𝑡 𝜎𝑥 𝑡, 𝑥, 𝑦
⊤𝜎𝑥 𝑡, 𝑥, 𝑦 𝛻𝑥𝑆 𝑡

⊤ 1/2 ⋅ 𝑑𝑈𝐴 𝑡  

2016-12-08  |  Quasi-Gaussian Model in QuantLib  |  How can the model be calibrated?  (2/9) 
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Step 2 and 3 - Apply Markovian projection methods plus linearization and 

derive approximate local volatility function 

We approximate the general swap rate dynamics  

𝑑𝑆 𝑡 = 𝑧 𝑡 ⋅ 𝛻𝑥𝑆 𝑡 𝜎𝑥 𝑡, 𝑥, 𝑦
⊤𝜎𝑥 𝑡, 𝑥, 𝑦 𝛻𝑥𝑆 𝑡

⊤ 1/2 ⋅ 𝑑𝑈𝐴 𝑡  

by expected volatility dynamics depending only on the swap rate itself 

𝑑𝑆 𝑡 ≈ 𝑧 𝑡 ⋅ 𝜙 𝑡, 𝑆(𝑡) ⋅ 𝑑𝑈𝐴 𝑡  

with 𝜙 defined based on conditional expectation 

𝜙 𝑡, 𝑠 2 = 𝐸𝐴 𝛻𝑥𝑆 𝑡 𝜎𝑥 𝑡, 𝑥, 𝑦
⊤𝜎𝑥 𝑡, 𝑥, 𝑦 𝛻𝑥𝑆 𝑡

⊤ | 𝑆 𝑡 = 𝑠  

Linearisation and further approximation yields 

𝑑𝑆 𝑡 ≈ 𝑧 𝑡 ⋅ 𝜙 𝑡, 𝑆 0 + 𝜙𝑠 𝑡, 𝑆 0 𝑆 𝑡 − 𝑆 0 ⋅ 𝑑𝑈
𝐴 𝑡  

≈ 𝑧 𝑡 ⋅ 𝜆𝑆 𝑡 ⋅ 𝑏𝑆 𝑡 ⋅ 𝑆 𝑡 + 1 − 𝑏𝑆 𝑡 ⋅ 𝑆 0 ⋅ 𝑑𝑈
𝐴 𝑡  

with deterministic time-dependent functions 𝜆𝑆 𝑡 = 𝜙 𝑡, 𝑆 0 /𝑆 0  and 𝑏𝑆 𝑡 = 𝑆 0 𝜙𝑠 𝑡, 𝑆 0 /𝜙 𝑡, 𝑆 0  

The scalar time-dependent functions 𝜆𝑆 𝑡 , 𝑏𝑆 𝑡 , and 𝑧 𝑡  capture all the information about the original 

Quasi-Gaussian model 
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Step 4 - Use averaging techniques to derive (approximate) time-

homogenuous Heston-like dynamics 

We arrive at a two-dimensional model for the forward swap rate 

𝑑𝑆 𝑡 = 𝑧 𝑡 ⋅ 𝜆𝑆 𝑡 ⋅ 𝑏𝑆 𝑡 ⋅ 𝑆 𝑡 + 1 − 𝑏𝑆 𝑡 ⋅ 𝑆 0 ⋅ 𝑑𝑈
𝐴 𝑡  

𝑑𝑧 𝑡 = 𝜃 ⋅ 𝑧0 − 𝑧 𝑡 ⋅ 𝑑𝑡 + 𝜂(𝑡) ⋅ 𝑧 𝑡 ⋅ 𝑑𝑍 𝑡  

with deterministic time-dependent functions 𝜆𝑆 𝑡  and 𝑏𝑆 𝑡 , and 𝜂 𝑡  

Map time-dependent parameters to time-homogenous parameters 

𝜆𝑆 𝑡 ↦ 𝜆 𝑆, 𝑏𝑆 𝑡 ↦ 𝑏 𝑆, and 𝜂 𝑡 ↦ 𝜂 𝑆 s.t. 

𝑑𝑆 𝑡 ≈ 𝑧 𝑡 ⋅ 𝜆 𝑆 ⋅ 𝑏 𝑆 ⋅ 𝑆 𝑡 + 1 − 𝑏 𝑆 ⋅ 𝑆 0 ⋅ 𝑑𝑈
𝐴 𝑡  

𝑑𝑧 𝑡 ≈ 𝜃 ⋅ 𝑧0 − 𝑧 𝑡 ⋅ 𝑑𝑡 + 𝜂 𝑆 ⋅ 𝑧 𝑡 ⋅ 𝑑𝑍 𝑡  
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Step 5 and 6 - Apply variable transformation to arrive at Heston model with 

semi-analytical Vanilla option formula 

Shift swap rate to arrive at Heston model dynamics 

𝑑𝑆 𝑡 = 𝑧 𝑡 ⋅ 𝜆 𝑆 ⋅ 𝑏 𝑆 ⋅ 𝑆 𝑡 + 1 − 𝑏 𝑆 ⋅ 𝑆 0 ⋅ 𝑑𝑈
𝐴 𝑡  

= 𝑧 𝑡 ⋅ 𝜆 𝑆𝑏 𝑆 
𝜎𝑌

⋅ 𝑆 𝑡 +
1 − 𝑏 𝑆

𝑏 𝑆
𝑆 0

𝑌 𝑡

⋅ 𝑑𝑈𝐴 𝑡  

𝑑𝑌 𝑡 = 𝑧 𝑡 ⋅ 𝜎𝑌 ⋅ 𝑌 𝑡 ⋅ 𝑑𝑈
𝐴 𝑡  

𝑑𝑧 𝑡 ≈ 𝜃 ⋅ 𝑧0 − 𝑧 𝑡 ⋅ 𝑑𝑡 + 𝜂 𝑆 ⋅ 𝑧 𝑡 ⋅ 𝑑𝑍 𝑡  

» Call/put option on 𝑆 𝑡  is equivalent to option on 𝑌 𝑡  (with shifted strike) 

» Call/put option in Heston model may be evaluated by semi-analytical methods 

2016-12-08  |  Quasi-Gaussian Model in QuantLib  |  How can the model be calibrated?  (5/9) 
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How does the model capture negative rates? 

Local volatility specification  

𝜎𝑓(𝑡,⋅) =
𝜆1(𝑡) 𝑎1 𝑡 + 𝑏1 𝑡 𝑓1(𝑡)

⋱
𝜆𝑑(𝑡) 𝑎𝑑 𝑡 + 𝑏𝑑 𝑡 𝑓𝑑(𝑡)

 

allows modelling negative rates down to 

𝑓𝑖 𝑡 > −𝑎𝑖 𝑡 /𝑏𝑖 𝑡  

However, swap rate dynamics for calibration based on convex combination of 𝑆 𝑡  and 𝑆 0  

𝑑𝑆 𝑡 = 𝑧 𝑡 ⋅ 𝜆𝑆 𝑡 ⋅ 𝑏𝑆 𝑡 ⋅ 𝑆 𝑡 + 1 − 𝑏𝑆 𝑡 ⋅ 𝑆 0 ⋅ 𝑑𝑈
𝐴 𝑡  

with 𝜆𝑆 𝑡 = 𝜙 𝑡, 𝑆 0 /𝑆 0  and 𝑏𝑆 𝑡 = 𝑆 0 𝜙𝑠 𝑡, 𝑆 0 /𝜙 𝑡, 𝑆 0  

Require 𝑆 0 > 0. 

Remediation Ideas (still work in progress) 

» Adapt averaging techniques directly to local vol structure 𝜙 𝑡, 𝑆 0 + 𝜙𝑠 𝑡, 𝑆 0 𝑆 𝑡 − 𝑆 0  

» Shift forward curve and implied normal vols (volatility transformation) and then apply calibration 

To circumvene difficulties with negative rates for the moment we shift all yield curves by +3% in 

forthcoming examples 
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We mark a 2-factor Quasi-Gaussian Model to fit observed market volatilities 
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Input volatility parameters for 2-factor Quasi-Gaussian model 

Derived approximate 10y x 10y swap rate volatility parameters 
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How is the fit to market smiles?(1) 

(1) Manual fit via analytic formula to market smile and shifted curves 
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How accurate are all these approximations? 

There are manageable variances between Quasi-Gaussian model, approximate Swaption model and 

Heston-like model 
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Proof of concept by a callable CMS spread swap case study 
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We consider pricing of a callable CMS spread swap and analyse the impact of 

the various model parameters(1) 

(1) We use market data as of July 2016 but shift curves by +3% to circumvene difficulties with negative rates for our example 

Legs Receive Pay 

Notional 10.000 EUR 

Effective Date 2d 

Termination Date 10y 

Tenor 3m 

Payoff Max{ 3 x [CMS10y – CMS2y], 0 } 3m Euribor – 100bp 

Conventions mod. following, Act/360 

Call Schedule 1y to 9y, annually 

1-F Gaussian model 

» General impact of 

stochastic rates 

2-F Gaussian model 

w/ perfect correlation 

» Capturing short-

term and long-term 

shocks  

» ATM vol calibration 

2-F Gaussian model 

w/ 50% correlation 

» Decoupling short-

term and long-term 

shocks 

2-F QG model w/ 

skew 

» Capturing implied 

volatility skew 

» Improve vol 

calibration 

2-F QG model w/ 

skew & smile 

» Capturing implied 

volatility smile 

(curvature 

» Improve calibration 

Modelling scenarios 

It is fairly reasonable that (de-)correlation is of particular importance. But what about skew and smile? 
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1-Factor Gaussian model in general may not capture ATM vols for both 2y and 

10y swap rates 
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1-F Gaussian model allows differentiating general stochastic rates impact 

from derivative‘s intrinsic value 
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2-F Gaussian model w/ perfect correlation allows improved fit to ATM 

volatilities 
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For 2-F Gaussian model w/ perfect correlation the reduction in callable note 

NPV is mainly driven by reduced option value 
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2-F Gaussian model w/ 50% model correlation yields 62% model-implied 

correlation between 2y vs. 10y swap rates 
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De-correlation in 2-F Gaussian model boosts CMS spread leg NPV  
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Incorporating local volatility allows capturing volatility skew 
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Reduced low-strike volatility reduces CMS spread leg; however effect is 

mainly offset by call option (i.e. option on opposite deal) 
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Incorporating stochastic volatility allows capturing volatility smile (i.e. 

curvature in implied vols) 

0.00%

0.10%

0.20%

0.30%

0.40%

0.50%

0.60%

0.70%

0.80%

-200 -100 0 100 200

2Y2Y

Mkt

Mdl

0.00%

0.10%

0.20%

0.30%

0.40%

0.50%

0.60%

0.70%

0.80%

-200 -100 0 100 200

5Y2Y

Mkt

Mdl

0.00%

0.20%

0.40%

0.60%

0.80%

1.00%

-200 -100 0 100 200

10Y2Y

Mkt

Mdl

0.00%

0.10%

0.20%

0.30%

0.40%

0.50%

0.60%

0.70%

0.80%

-200 -100 0 100 200

2Y5Y

Mkt

Mdl

0.00%

0.10%

0.20%

0.30%

0.40%

0.50%

0.60%

0.70%

0.80%

-200 -100 0 100 200

5Y5Y

Mkt

Mdl

0.00%

0.20%

0.40%

0.60%

0.80%

1.00%

-200 -100 0 100 200

10Y5Y

Mkt

Mdl

0.00%

0.20%

0.40%

0.60%

0.80%

1.00%

-200 -100 0 100 200

2Y10Y

Mkt

Mdl

0.00%

0.20%

0.40%

0.60%

0.80%

1.00%

-200 -100 0 100 200

5Y10Y

Mkt

Mdl

0.00%

0.20%

0.40%

0.60%

0.80%

1.00%

-200 -100 0 100 200

10Y10Y

Mkt

Mdl

2016-12-08  |  Quasi-Gaussian Model in QuantLib  |  Proof of concept by a callable CMS spread swap case study  (10/12) 



 © d-fine — All rights reserved  © d-fine — All rights reserved  |  32 

Low-strike vols are increased by stochastic volatility; again with offsetting 

effects on CMS spread leg and call option 
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The component prices help for a detailed analysis of pricing results 

Scenario Intrinsic 1F Gaussian 2F, Full Corr. De-Corr. Skew Smile

MC Pricing

CMS2y 3,055 3,077 3,074 3,074 3,075 3,076

CMS10y 3,519 3,602 3,607 3,604 3,603 3,609

Euribor 2,753 2,754 2,756 2,751 2,757 2,757

StructLeg 1,394 1,574 1,600 1,760 1,744 1,756

FundLeg -1,872 -1,873 -1,875 -1,870 -1,876 -1,876

Underlying -479 -299 -275 -110 -132 -119

AMC Pricing

NoteNPV 280 487 391 587 582 578

UnderlyingNPV -479 -298 -275 -110 -133 -121

OptionNPV 758 784 667 697 715 699

2016-12-08  |  Quasi-Gaussian Model in QuantLib  |  Proof of concept by a callable CMS spread swap case study  (12/12) 



 © d-fine — All rights reserved  © d-fine — All rights reserved  |  34 

Summary and References 
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Summary and References 

Summary 

» Quasi-Gaussian model appears to be a powerfull tool for model validation of comlex rates 

derivatives 

» All relevant methods are exported to Excel with sample spread sheets available 

» Further analysis/research required (negative rates, automated calibration) to get it fully 

functional in a production setting 

 

References 
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