
Calibration of Heston Local Volatility Models

J. Göttker-Schnetmann, DZ BANK
K. Spanderen, E.ON Global Commodities SE

QuantLib User Meeting 2015
Düsseldorf
2015-11-30

Göttker-Schnetmann, Spanderen Calibration of Heston Local Volatility Models QuantLib User Meeting 1 / 32



Calibration of Heston Local Volatility Models

Model Overview

Fokker-Planck Calibration

Feyman-Kac Calibration

Case Studies

Summary

Göttker-Schnetmann, Spanderen Calibration of Heston Local Volatility Models QuantLib User Meeting 2 / 32



Model and Stochastic Differential Equations

Add leverage function L(St , t) and mixing factor η to the Heston
Model:

d ln St =

(
rt − qt −

1
2

L(St , t)2νt

)
dt + L(St , t)

√
νtdW S

t

dνt = κ (θ − νt ) dt + ησ
√
νtdW ν

t

ρdt = dW ν
t dW S

t

Leverage L(xt , t) is given by probability density p(St , ν, t) and

L(St , t) =
σLV (St , t)√
E[νt |S = St ]

= σLV (St , t)

√ ∫
R+ p(St , ν, t)dν∫
R+ νp(St , ν, t)dν

Mixing factor η tunes between stochastic and local volatility
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Cheat Sheet: Link between SDE and PDE

Starting point is a multidimensional SDE of the form:

dx t = µ(x t , t)dt + σ(x t , t)dW t

Feynman-Kac: price of a derivative u(x t , t) with boundary condition
u(xT ,T ) at maturity T is given by:

∂tu +
n∑

k=1

µi∂xk u +
1
2

n∑
k ,l=1

(
σσT

)
kl
∂xk∂xl u − ru = 0

Fokker-Planck: time evolution of the probability density function p(x t , t)
with the initial condition p(x , t = 0) = δ(x − x0) is given by:

∂tp = −
n∑

k=1

∂xk [µip] +
1
2

n∑
k ,l=1

∂xk∂xl

[(
σσT

)
kl

p
]
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Feynman-Kac Backward Equation

The SLV model leads to following Feynman-Kac equation for a function
u : R× R≥0 × R≥0 → R, (x , ν, t) 7→ u(x , ν, t):

0 = ∂tu +
1
2

L2ν∂2
x u +

1
2
η2σ2ν∂2

νu + ησνρL∂x∂νu

+

(
r − q − 1

2
L2ν

)
∂xu + κ (θ − ν) ∂νu − ru

PDE can be solved using either Implict scheme (slow) or more
advanced operator splitting schemes like modified Craig-Sneyd or
Hundsdorfer-Verwer in conjunction with damping steps (fast).
Implementation is mostly harmless, extend FdmHestonOp.
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Fokker-Planck Forward Equation

The corresponding Fokker-Planck equation for the probability density
p : R× R≥0 × R≥0 → R≥0, (x , ν, t) 7→ p(x , ν, t) is:

∂tp =
1
2
∂2

x

[
L2νp

]
+

1
2
η2σ2∂2

ν [νp] + ησρ∂x∂ν [Lνp]

−∂x

[(
r − q − 1

2
L2ν

)
p
]
− ∂ν [κ (θ − ν) p]

Numerical solution of the PDE is cumbersome due to difficult
boundary conditions and the Dirac delta distribution as the initial
condition.
PDE can be efficiently solved using operator splitting schemes,
preferable the modified Craig-Sneyd scheme
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Fokker-Planck Calibration: Last Year’s Tool Set

Coordinate transformation z = ln ν to overcome divergent
probability density at ν → 0

Proper implementation of zero
flux boundary condition for
ν → 0 and ν → νmax

Non-uniform meshes in two
dimensions
Semi-Analytical approximation
of initial Dirac distribution for
small t
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Three important improvements have been added since then

Göttker-Schnetmann, Spanderen Calibration of Heston Local Volatility Models QuantLib User Meeting 7 / 32



Fokker-Planck Calibration: Prediction-Correction Step

1 Use Fokker-Planck equation to get from

p(x , ν, t)→ p(x , ν, t + ∆t)

assuming a piecewise constant leverage function L(xt , t) in t

2 Calculate leverage function at t + ∆t :

L(x , t + ∆t) = σLV (x , t + ∆t)

√ ∫
R+ p(x , ν, t + ∆t)dν∫
R+ νp(x , ν, t + ∆t)dν

3 Set t := t + ∆t
4 If t is smaller than the final maturity goto 1
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Fokker-Planck Calibration: Prediction-Correction Step

1 Set L(x , t + ∆t) = L(x , t)
2 Use Fokker-Planck equation and L(xt , t + ∆t) to evolve

p(x , ν, t)→ p(x , ν, t + ∆t)

3 Calculate again the leverage function at t + ∆t :

L(x , t + ∆t) = σLV (x , t + ∆t)

√ ∫
R+ p(x , ν, t + ∆t)dν∫
R+ νp(x , ν, t + ∆t)dν

4 For number of prediction-correction steps goto 2

5 Set t := t + ∆t
6 If t is smaller than the final maturity goto 1
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Fokker-Planck Calibration: Grid Optimization

Observation: The shape of p(x , ν, t) changes rapidly for small t
Adapt time step size with the evolution of the probability density

∆t(t) = ∆tmine−βt + ∆tmax (1− e−βt )

Adaptive grid boundaries to concentrate the grid at the singularity
then spread out with the evolving density
The local volatility surface can be used as a guide in x direction,
since it generates the right density
Distribution in νt direction is known and can be used to set the
size.
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Grid Optimization: Examples
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Grid Optimization: Cruise Control

The Calibration routine ends up with many grid related parameters
Good news: Quality of the solution can be checked at any time

∞∫
−∞

p(x , ν, t)dx !
=

η2σ2 (1− e−κt)
4κ

χ
′2
d

(
4κe−κt

η2σ2 (1− e−κt )
ν0

)
∞∫

0

p(x , ν, t)dν !
= ploc(x , t)

where ploc is the solution of the corresponding Local Volatility
Fokker-Planck equation 1

1Bad news: We had to implement a Fokker-Planck solver for Local Volatility models
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Cruise Control: Feller Constraint Fulfilled
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Cruise Control: Feller Constraint Violated
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Feyman-Kac Calibration

The backward Feyman-Kac equation is much simpler to solve
than the Fokker-Planck forward equation
Boundary condition is more well behaved and the initial start
condition is not a Dirac delta distribution.

Does brute force calibration via the Feynman-Kac equation work?
Define leverage function by a two dimensional interpolation on
benchmark options
Value of the leverage function at each benchmark option is a
parameter of the optimisation
Could add exotics to that, too..
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Feyman-Kac Calibration: Performance

The Levenberg-Marquardt optimizer needs the partial derivatives
against all parameters for an optimisation step

Number of option valuations per
Levenberg-Marquardt step grows
with square of number of
benchmark instruments
Each option valuation translates
into solving a two dimensional PDE
Needs big machines and parallel
computing
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Feyman-Kac Calibration: GPU Computing

Implementing Operator
Splitting using recent
CUDA tools has become
pretty straight forward
Construct operators on
CPU and transfer to GPU
via standard sparse
matrix format
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Feyman-Kac Calibration: Example

Leverage Function calibrated by brute force optimisation on a 7 ⊗ 11 option grid
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Feyman-Kac Calibration: Result

Resulting leverage function tends to oscillate
Levenberg-Marquardt gets stuck in sub-minima
Even on big machines (e.g. 64 nodes) calibration might take more
than 30 minutes.
Quadratic runtime scaling with number of benchmark instruments
does not allow for a fine granular calibration
The dual equation or AAD might help to mitigate some
performance problems
GPU will not help as PDE usually do not scale properly on GPUs

=⇒ Feyman-Kac calibration does not look promising
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From Heston via SLV to Local Volatility and Back

Given a calibrated Heston model and a calibrated local volatility model
we can use the SLV model

d ln St =

(
rt − qt −

1
2

L(St , t)2νt

)
dt + L(St , t)

√
νtdW S

t

dνt = κ (θ − νt ) dt + ησ
√
νtdW ν

t

ρdt = dW ν
t dW S

t

for two things:
1 Remove calibration errors which the stiffer Heston model exhibits,

especially skew for short-dated options
2 Match the volatility dynamics of the market. Interpolate between

the two models by tuning η between 0 and 1.
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From Heston via SLV to Local Volatility and Back

Heston model: κ = 2.0, θ = 0.09, ρ = −0.75, σ = 0.4, ν0 = 0.09
Calibrate Local Volatility σloc(St , t) to match Heston prices
Define scaled leverage function

Ls(St , t) = L(St , t)
√
θ − e−κt (θ − ν0)

For η = 0 we get
Ls(St , t) = σloc(St , t)

Can be seen as the most complicated way to calibrate a local
volatility surface
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From Heston via SLV to Local Volatility and Back
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SLV Pricing for Vanilla, Barrier and Express Options

Good news: Finite difference framework is already able to deal with
SLV. Implementing a Barrier Option Pricer was literally only 5 lines of
code

Modified Heston Solver
void FdmHestonSolver::performCalculations() const {

boost::shared_ptr<FdmLinearOpComposite> op(
new FdmHestonOp(

solverDesc_.mesher, process_.currentLink(),
(!quantoHelper_.empty()) ? quantoHelper_.currentLink()

: boost::shared_ptr<FdmQuantoHelper>(),
leverageFct_));

solver_ = boost::shared_ptr<Fdm2DimSolver>(
new Fdm2DimSolver(solverDesc_, schemeDesc_, op));

}
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Case Study: Delta of Vanilla Option

Vanilla Put Option: 3y maturity, S0=100, strike=100
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Case Study: Barrier Option Prices

DOP Barrier Option: 3y maturity, S0=100, strike=100
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Case Study: Delta of Barrier Options

DOP Barrier Option: 3y maturity, S0=100, strike=100

Barrier Option 3y maturity, 60% barrierGöttker-Schnetmann, Spanderen Calibration of Heston Local Volatility Models QuantLib User Meeting 26 / 32



Case Study: Express Option
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Case Study: Express Option Prices

Express Option: S0 = 100, trigger=100, put strike=50, 3y maturity, coupon = (10%, 20%, 30%)
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Case Study: Delta an Express Options

Express Option: S0 = 100, trigger=100, put strike=50, 3y maturity, coupon = (10%, 20%, 30%)
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Summary: Heston Stochastic Local Volatility

Adaptive grid sizes speed-up calibration by concentration on
important parameter regions
Prediction-Correction steps have improved the calibration stability
significantly
Use Cruise Control to monitor solution accuracy.
Calibration via Feynman-Kac backward equation was slow and
inaccurate.
Easy extension of finite difference framework to price Vanilla,
Barrier and Express options
Choice of η can have a significant impact on prices and greeks

Repository: Pull Request #320
https://github.com/jschnetm/quantlib/tree/slv/QuantLib
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Disclaimer

The views, opinions, positions or strategies expressed in this presentation are
those of the authors and do not necessarily represent the views, opinions,
positions or strategies of and should not be attributed to E.ON Global
Commodities SE or DZ BANK.
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