
Automatic differentiation beyond typedef
and operator overloading

Peter Caspers

Quaternion Risk Management

01 December 2015

www.quaternionrisk.com

Agenda

Introduction to AD

Approaches in QuantLib

Source code transformation

© 2015 Quaternion Risk Management Ltd. Peter Caspers 2

www.quaternionrisk.com

Agenda

Introduction to AD

Approaches in QuantLib

Source code transformation

© 2015 Quaternion Risk Management Ltd. Peter Caspers 3

www.quaternionrisk.com

AD in a nutshell 1/3

I for a computer program f : Rn → Rm, compute ∂xf
I ... by looking at the program’s sequence of basic operations

(+− ∗/, exp, sin, erf ...), using basic calculus in each step
I ... and stitching everything together with the chain rule

© 2015 Quaternion Risk Management Ltd. Peter Caspers 4

www.quaternionrisk.com

AD in a nutshell 2/3

I results are exact up to machine precision, also for higher order
derivatives

I implementation:
I operator overloading instrumenting the double type1

I source code transformation tools2

I coding by hand

1e.g. CppAD, ADOL-C, Adept, dco, proprietary tools
2e.g. ADIC, OpenAD/F

© 2015 Quaternion Risk Management Ltd. Peter Caspers 5

www.quaternionrisk.com

AD in a nutshell 3/3

I local jacobians can be propagated forward (x ; y) (that’s
intuitive) or backward (y ; x) in a dual or adjoint fashion

I one forward sweep yields one directional derivative of your
choice of the vector of output variables

I one reverse sweep yields the gradient w.r.t. all input variables of
one linear combination of the output variables

I the complexity for one (forward or reverse) sweep is a constant,
low multiple of the complexity for one function evaluation3

I in particular: law of cheap gradient !

3theory: the multiple in adjoint mode is bounded by 4
© 2015 Quaternion Risk Management Ltd. Peter Caspers 6

www.quaternionrisk.com

Adjoint mode example

I program f : Rn+1 → R: y = exp
(∏n

i=0 xi
)

sin
(∏n

i=0 xi
)

I imagine n to be large, like 1000
I evaluation complexity: n + 3 = O(n) operations ∈ {∗, exp, sin}
I goal: compute ∂xf ∈ Rn+1

I finite difference approach: (n + 1)(n + 3) + 2(n + 1) = O(n2)
operations in addition to the evaluation

© 2015 Quaternion Risk Management Ltd. Peter Caspers 7

www.quaternionrisk.com

Adjoint mode example - distance 1 nodes

I init ∂yy = 1
I first break down is y = uv
I ∂uy = ∂yy∂uy = v, ∂vy = ∂yy∂vy = u
I 2 operations assuming we have

I evaluated the function and at the same time built the computational
graph so that we know ...

I ... the value of u and v and
I ... the “analytics” for the local derivatives

I (disclaimer: we are not overly pedantic on how to count the
operations in this example here ...)

© 2015 Quaternion Risk Management Ltd. Peter Caspers 8

www.quaternionrisk.com

Adjoint mode example - distance 2 nodes

I second break down u = exp(x), v = sin(x)
I ∂xu = exp(x), ∂xv = cos(x)
I ∂xy = ∂uy∂xu + ∂vy∂xv = sin(x) exp(x) + exp(x) cos(x)
I again, we know x from the initial function evaluation
I 4 operations (total operations count 6)

© 2015 Quaternion Risk Management Ltd. Peter Caspers 9

www.quaternionrisk.com

Adjoint mode example - distance 3 nodes

I third break down x = x0h0

I ∂x0 x = h0, ∂h0 x = x0

I ∂x0 y = ∂xy∂x0 x = [sin(x) exp(x) + exp(x) cos(x)]h0

I ∂h0 y = ∂xy∂x0 h0 = [sin(x) exp(x) + exp(x) cos(x)]x0

I ... we know h0 from the forward sweep ...
I 2 operations (total operations count 8)

© 2015 Quaternion Risk Management Ltd. Peter Caspers 10

www.quaternionrisk.com

Adjoint mode example - nodes with distance n+2

I continue like in the third break down until we arrive at hn−1 = xn

I ∂xi y = [sin(
∏

xi) exp(
∏

xi) + exp(
∏

xi) cos(
∏

xi)]
∏

j 6=i xi

I 2n operations from the third break down on
I total operations count 2n + 6
I one function evaluation was n + 3 operations
I naive approach for gradient calculation was

(n + 1)(n + 3) + 2(n + 1) operations

© 2015 Quaternion Risk Management Ltd. Peter Caspers 11

www.quaternionrisk.com

Agenda

Introduction to AD

Approaches in QuantLib

Source code transformation

© 2015 Quaternion Risk Management Ltd. Peter Caspers 12

www.quaternionrisk.com

The typedef approach

I just says typedef CppAD::AD<double> Real

I it is a bit more complicated than that
I QuantLibAdjoint (CompatibL), with additional logic (tapescript)
I AD-or-not-AD decision at compile time and globally, i.e. no

selective activation of variables

© 2015 Quaternion Risk Management Ltd. Peter Caspers 13

www.quaternionrisk.com

Matrix multiplication with (sleeping) active doubles

Matrix_t<T> A(1024, 1024);
Matrix_t<T> B(1024, 1024);
...
Matrix_t<T> C = A * B;

I T = double: 764 ms
I T = CppAD::AD<double>: 8960 ms
I penalty: 11.7x
I note that we do not get anything for that (AD is disabled)
I this is not an exception, but seems to occur for every “numerically

intense” code section (see below for a second example)

© 2015 Quaternion Risk Management Ltd. Peter Caspers 14

www.quaternionrisk.com

Active doubles vs. native doubles 1/2

I for a MinimalWrapper consisting of a double and a pointer
MinimalWrapper* (set to nullptr always), the penalty is
around 2.1x

I for this gcc generates scalar double instructions (mulsd, addsd)
I for the native double gcc generates packed double instructions

(mulpd, addpd)4

I in addtion the more involved data layout of the
MinimalWrapper (placing a pointer after each native double)
leads to more instructions in the innermost loop5

4with -ftree-vectorize, a similar observation holds for -ffast-math optimizations
5we note that cachegrind does not report a higher rate of cache misses though

© 2015 Quaternion Risk Management Ltd. Peter Caspers 15

www.quaternionrisk.com

Active doubles vs. native doubles 2/2

I (current) compilers seem to generate more instructions and
possibly less efficient instructions for non-native double wrappers

I memory consumption will go up, too
I it is not clear what the “best possible” OO tool can achieve, but

probably it will be something between 2x and 12x
I 2x is already too much, if we do not get anything for that
I we can easily avoid this useless overhead

© 2015 Quaternion Risk Management Ltd. Peter Caspers 16

www.quaternionrisk.com

The template approach

I introduce templated versions of relevant classes (e.g. Matrix_t)
I for backward compatibility, typedef Matrix_t<Real> Matrix

I it is a bit more complicated than that
I allows mixing of active and native classes, as required, i.e.

activation of variables in selected parts of the application only
I work in progress6, but basic IRD stuff works (like yield and

volatility termstructures, swaps, CMS coupons, GSR model)
I https://github.com/pcaspers/quantlib/tree/adjoint

I https://quantlib.wordpress.com/tag/automatic-differentiation/

6conversion rate ≈ 2000 LOC / day (manual + an Elisp-little-helper)
© 2015 Quaternion Risk Management Ltd. Peter Caspers 17

https://github.com/pcaspers/quantlib/tree/adjoint
https://quantlib.wordpress.com/tag/automatic-differentiation/

www.quaternionrisk.com

Expensive gradients with operator overloading

I the typedef as well as the template approach use operator
overloading tools (like CppAD)

I for numerically intense algorithms, we observe dramatic
performance loss (because less optimization can be applied to
non-native types)

I e.g. a convolution engine for Bermudan swaptions is 80x
slower7 in adjoint mode compared to one native-double pricing

I if AD is actually not needed, the template approach is the way
out, otherwise we need other techniques

7see https://quantlib.wordpress.com/2015/04/14/adjoint-greeks-iv-exotics

© 2015 Quaternion Risk Management Ltd. Peter Caspers 18

https://quantlib.wordpress.com/2015/04/14/adjoint-greeks-iv-exotics

www.quaternionrisk.com

Agenda

Introduction to AD

Approaches in QuantLib

Source code transformation

© 2015 Quaternion Risk Management Ltd. Peter Caspers 19

www.quaternionrisk.com

Source Code Transformation

I generate adjoint code at compile time, which may yield better
performance

I however, does not work out of the box like OO tools
I no mature tool for C++ (ADIC 2.0 = “OpenAD/Cpp” under

development)
I needs specific preparation of code before it can be applied

© 2015 Quaternion Risk Management Ltd. Peter Caspers 20

www.quaternionrisk.com

OpenAD/F

I OpenAD is a language independent AD backend working with
abstract xml representations (XAIF) of the computational model

I OpenAD/F adds a Fortran 90 front end
I Open Source, proven on large scale real-world models
I http://www.mcs.anl.gov/OpenAD

© 2015 Quaternion Risk Management Ltd. Peter Caspers 21

http://www.mcs.anl.gov/OpenAD

www.quaternionrisk.com

From QuantLib to SCT

I isolate the core computational code and reimplement it in Fortran
I use OpenAD/F to generate adjoint code, build a separate

support library from that
I use a wrapper class on the QuantLib side to communicate with

the support libary
I minimal library example8 and LGM swaption engine9 available
I build via make (AD support library) or make plain (without

OpenAD - transformation, for testing)

8
https://github.com/pcaspers/quantlib/tree/master/QuantLibOAD/simplelib

9
https://github.com/pcaspers/quantlib/tree/master/QuantLibOAD/lgm

© 2015 Quaternion Risk Management Ltd. Peter Caspers 22

https://github.com/pcaspers/quantlib/tree/master/QuantLibOAD/simplelib
https://github.com/pcaspers/quantlib/tree/master/QuantLibOAD/lgm

www.quaternionrisk.com

By the way ... different motivation, but same idea ?

(taken from Luigi’s talk at the 11th FI conference, 2015, Paris)

© 2015 Quaternion Risk Management Ltd. Peter Caspers 23

www.quaternionrisk.com

LGM Bermudan swaption convolution engine

I core computation can be implemented in around 200 lines
I native interface only using (arrays of) doubles and integers
I input: relevant times {ti}, model {(H(ti), ζ(ti),P(0, ti)},

Termsheet, codified as index lists {ki, li, ...}
I output: npv, gradient w.r.t. {(H(ti), ζ(ti),P(0, ti)}

subroutine lgm_swaption_engine(n_times, times, modpar, n_expiries, &
expiries, callput, n_floats, &
float_startidxes, float_mults, index_acctimes, float_spreads, &
float_t1s, float_t2s, float_tps, &
fix_startidxes, n_fixs, fix_cpn, fix_tps, &
integration_points, stddevs, res)

© 2015 Quaternion Risk Management Ltd. Peter Caspers 24

www.quaternionrisk.com

Building the AD support library

© 2015 Quaternion Risk Management Ltd. Peter Caspers 25

www.quaternionrisk.com

LGM Bermudan swaption convolution engine

I C++ wrapper is a usual QuantLib pricing engine
I precomputes the values and organizes them in arrays for the

Fortran core
I invokes the Fotran routine
I stores the npv and the adjoint gradient as results

void LgmSwaptionEngineAD::calculate() const {
// collect data needed for core computation routine
...
// join all dates and fill index vectors
...
// call core computation routine and set results

lgm_swaption_engine_ad_(&ntimes, &allTimes[0], &modpar[0], &nexpiries, ...
&integration_pts, &std_devs, &res, &dres[0]);

...
results_.value = res;
results_.additionalResults["sensitivityTimes"] = allTimes;
results_.additionalResults["sensitivityH"] = H_sensitivity;
results_.additionalResults["sensitivityZeta"] = zeta_sensitivity;
results_.additionalResults["sensitivityDiscount"] = discount_sensitivity;

© 2015 Quaternion Risk Management Ltd. Peter Caspers 26

www.quaternionrisk.com

Performance

I 10y Bermudan swaption, yearly callable
I 49 grid points per expiry
I single pricing10 (non-transformed code): 4.2 ms
I pricing + gradient ∈ R105: 25.6 ms11

I additional stuff12: 6.2 ms
I adjoint calculation multiple: 6.1x (7.6x including add. stuff)
I common, practical target for the adjoint multiple: 5x - 10x

10Intel(R) Core(TM) i7-2760QM CPU @ 2.40GHz, using one thread
11to achieve this, the runtime configuration of OpenAD/F has to be modified
12transformation of gradient w.r.t. model parameters to usual vegas, see below

© 2015 Quaternion Risk Management Ltd. Peter Caspers 27

www.quaternionrisk.com

How not to use AD

I avoid to record tapes that go through solvers, optimizers, etc.13

I instead use the implicit function theorem to convert gradients w.r.t.
calibrated (model) variables to gradients w.r.t. market variables

I this is more efficient, less error prone (e.g. Bisection produces
zero derivatives always, optimizations may produce bogus
derivatives depending on the start value)

I in the case of SCT applied as above this is even necessary from a
practical viewpoint

I apply AD only to differentiable programs (e.g. replace a digital
payoff by a call spread)

I avoid to record long tapes e.g. for all paths of a MC simulation,
reuse a tape recorded on one path instead (here, ensure
tape-safety)

13not to be confused with feeding AD - derivatives of the target function to
optimizers like Levenberg-Marquardt or Newton-style solvers
© 2015 Quaternion Risk Management Ltd. Peter Caspers 28

www.quaternionrisk.com

Calibration of LGM model

To illustrate the usage of the implicit function theorem, consider the
calibration to n swaptions14

Black(σ1)− NpvLGM(ζ1) = 0
...

Black(σn)− NpvLGM(ζn) = 0

with
∂NpvLGM

∂ζ
= diag(ν1, ..., νn), all νi 6= 0 (1)

14recall that ζ(t) is the accumulated model variance up to time t
© 2015 Quaternion Risk Management Ltd. Peter Caspers 29

www.quaternionrisk.com

Implicit function theorem

Locally, there exists a unique g

g(σ1, ..., σn) = (ζ1, ..., ζn) (2)

and
∂g
∂σ

=

(
∂NpvLGM

∂ζ

)−1
∂Black
∂σ

(3)

Informally, g = ζ(σ) and

∂ζ

∂σ
=

∂ζ

∂NPV
∂NPV
∂σ

=

(
∂NPV
∂ζ

)−1
∂NPV
∂σ

(4)

© 2015 Quaternion Risk Management Ltd. Peter Caspers 30

www.quaternionrisk.com

Pasting the vega together

∂NpvBerm

∂σ
=
∂NpvBerm

∂ζ

∂ζ

∂σ
=
∂NpvBerm

∂ζ

(
∂NpvCalib

∂ζ

)−1
∂Black
∂σ

I the components can be calculated analytically (calibrating
swaptions’ market vegas) or using the ad engine15 (calibrating
swaptions’ ζ-gradient, but this is much cheaper than for the
Bermudan case)

I matrix inversion and multiplication is cheap
I the additional computation time is quite small (see the example

above, the addtional costs are the same as for 1.5x original NPV
calculations)

15in this particular case, bump and revalue would be even cheaper (since we are
only sensitive to one ζ per swaption, so only one additional evaluation is needed)
© 2015 Quaternion Risk Management Ltd. Peter Caspers 31

www.quaternionrisk.com

Summary

I global instrumentation (via typedefs) with active variables can
lead to performance (and memory) issues

I selective / mixed instrumentation (via templates) solves the
issue, but leaves problems when AD is required for numerically
intense parts of the code

I source code transformation can solve this issue, we gave an
example in terms of a Bermudan swaption engine transformed
using OpenAD/F yielding an adjoint multiple of 6.1 compared to
80 with operator overloading (using CppAD)

© 2015 Quaternion Risk Management Ltd. Peter Caspers 32

info@quaternionrisk.com | www.quaternionrisk.com

IrelandGermanyUK

UK Germany Ireland
29th Floor, 1 Canada Square Maurenbrecherstrasse 16 54 Fitzwilliam Square

Canary Wharf, London E145DY 47803 Krefeld Dublin 2
+44 207 712 1645 +49 2151 9284 800 +353 1 678 7922

caroline.tonkin@quaternionrisk.com heidy.koenings@quaternionrisk.com joelle.higgins@quaternionrisk.com

	Introduction to AD
	Approaches in QuantLib
	Source code transformation

